题目链接:http://poj.org/problem?id=2533

Longest Ordered Subsequence
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 55459   Accepted: 24864

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion
 
 
O(n^2):
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e6+; int dp[MAXN], a[MAXN]; int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d",&a[i]); ms(dp, );
for(int i = ; i<=n; i++)
for(int j = ; j<i; j++)
if(j== || a[i]>a[j])
dp[i] = max(dp[i], dp[j]+); int ans = -INF;
for(int i = ; i<=n; i++)
ans = max(ans, dp[i]);
printf("%d\n",ans);
}
}
 
O(nlogn):
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e6+; int dp[MAXN], a[MAXN]; int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d",&a[i]); int len = ;
for(int i = ; i<=n; i++)
{
if(i== || a[i]>dp[len])
dp[++len] = a[i]; else
{
int pos = lower_bound(dp+,dp++len,a[i]) - (dp+);
dp[pos+] = a[i];
}
}
printf("%d\n",len);
}
}

POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)的更多相关文章

  1. POJ2533 Longest Ordered Subsequence 【最长递增子序列】

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 32192   Acc ...

  2. 题解报告:poj 2533 Longest Ordered Subsequence(最长上升子序列LIS)

    Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence ...

  3. 【POJ - 2533】Longest Ordered Subsequence (最长上升子序列 简单dp)

    Longest Ordered Subsequence 搬中文 Descriptions: 给出一个序列,求出这个序列的最长上升子序列. 序列A的上升子序列B定义如下: B为A的子序列 B为严格递增序 ...

  4. [POJ2533]Longest Ordered Subsequence<dp>

    题目链接:http://poj.org/problem?id=2533 描述: A numeric sequence of ai is ordered if a1 < a2 < ... & ...

  5. POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)

    传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...

  6. POJ - 2533 Longest Ordered Subsequence(最长上升子序列)

    d.最长上升子序列 s.注意是严格递增 c.O(nlogn) #include<iostream> #include<stdio.h> using namespace std; ...

  7. POJ2533——Longest Ordered Subsequence(简单的DP)

    Longest Ordered Subsequence DescriptionA numeric sequence of ai is ordered if a1 < a2 < ... &l ...

  8. (线性DP LIS)POJ2533 Longest Ordered Subsequence

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 66763   Acc ...

  9. poj-2533 longest ordered subsequence(动态规划)

    Time limit2000 ms Memory limit65536 kB A numeric sequence of ai is ordered if a1 < a2 < ... &l ...

随机推荐

  1. Google JavaScript代码风格指南

    Google JavaScript代码风格指南 修正版本 2.28 Aaron Whyte Bob Jervis Dan Pupius Eric Arvidsson Fritz Schneider R ...

  2. 如何设置目标并发(或者目标RPS)?

    基本概念 首先您需要了解什么是并发用户.TPS 和它们之间的关系. 并发用户:指的是现实系统中同时操作业务的用户,在性能测试工具中一般称为虚拟用户(Virutal User).一般是站在客户侧评估的角 ...

  3. URAL 2040 Palindromes and Super Abilities 2

    Palindromes and Super Abilities 2Time Limit: 500MS Memory Limit: 102400KB 64bit IO Format: %I64d &am ...

  4. hust 1017 dancing links 精确覆盖模板题

    最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...

  5. 尽量写出大家都能看懂的ReactJS入门教程

    个人感觉ReactJS相比于传统的JS框架还是挺有意思的,主要是它将JS代码和HTML代码完美的结合在了一起,有点jsp把java代码和html混在一起写的意思?但是它通过组件的形式实现了代码可复用, ...

  6. 【HDOJ6343】Graph Theory Homework(贪心)

    题意: 给定n个点,每个点有权值a[i],从A走到B的花费是下取整sqrt(a[i]-a[j]),求从1号点走到n号点的最小花费 1<=n,a[i]<=1e5 思路: #include&l ...

  7. ArrayList内部实现原理

    数组在创建的时候长度是固定的,那么就有往ArrayList中不断添加对象的时候,那么ArrayList是如何管理这些数组的? ArrayList内部通过Object[]实现,我们通过分析ArrayLi ...

  8. Spring中使用byType实现Beans自动装配

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/beans-auto-wiring/spring-autowiring-byType.html: 此 ...

  9. 【转】AOP

    原文:http://blog.csdn.net/zhoudaxia/article/details/38502347 .---------------------------------------- ...

  10. VC++ 2010编译错误 fatal error C1189 error This file requires _WIN32_WINNT to be #defined at least

    打开你的C++工程,找到里面的stdafx.h文件,然后把下面的红色内容替换成绿色的 参考:http://blog.csdn.net/dongliqiang2006/article/details/5 ...