题目链接:http://poj.org/problem?id=2533

Longest Ordered Subsequence
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 55459   Accepted: 24864

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion
 
 
O(n^2):
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e6+; int dp[MAXN], a[MAXN]; int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d",&a[i]); ms(dp, );
for(int i = ; i<=n; i++)
for(int j = ; j<i; j++)
if(j== || a[i]>a[j])
dp[i] = max(dp[i], dp[j]+); int ans = -INF;
for(int i = ; i<=n; i++)
ans = max(ans, dp[i]);
printf("%d\n",ans);
}
}
 
O(nlogn):
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e6+; int dp[MAXN], a[MAXN]; int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d",&a[i]); int len = ;
for(int i = ; i<=n; i++)
{
if(i== || a[i]>dp[len])
dp[++len] = a[i]; else
{
int pos = lower_bound(dp+,dp++len,a[i]) - (dp+);
dp[pos+] = a[i];
}
}
printf("%d\n",len);
}
}

POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)的更多相关文章

  1. POJ2533 Longest Ordered Subsequence 【最长递增子序列】

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 32192   Acc ...

  2. 题解报告:poj 2533 Longest Ordered Subsequence(最长上升子序列LIS)

    Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence ...

  3. 【POJ - 2533】Longest Ordered Subsequence (最长上升子序列 简单dp)

    Longest Ordered Subsequence 搬中文 Descriptions: 给出一个序列,求出这个序列的最长上升子序列. 序列A的上升子序列B定义如下: B为A的子序列 B为严格递增序 ...

  4. [POJ2533]Longest Ordered Subsequence<dp>

    题目链接:http://poj.org/problem?id=2533 描述: A numeric sequence of ai is ordered if a1 < a2 < ... & ...

  5. POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)

    传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...

  6. POJ - 2533 Longest Ordered Subsequence(最长上升子序列)

    d.最长上升子序列 s.注意是严格递增 c.O(nlogn) #include<iostream> #include<stdio.h> using namespace std; ...

  7. POJ2533——Longest Ordered Subsequence(简单的DP)

    Longest Ordered Subsequence DescriptionA numeric sequence of ai is ordered if a1 < a2 < ... &l ...

  8. (线性DP LIS)POJ2533 Longest Ordered Subsequence

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 66763   Acc ...

  9. poj-2533 longest ordered subsequence(动态规划)

    Time limit2000 ms Memory limit65536 kB A numeric sequence of ai is ordered if a1 < a2 < ... &l ...

随机推荐

  1. zoj 1240

    IBM Minus One Time Limit: 2 Seconds      Memory Limit: 65536 KB You may have heard of the book '2001 ...

  2. 【CSS】position relative 用法

    Relative是position的一个属性,是相对定位. position的默认值是static,(也就是说对于任意一个元素,如果没有定义它的position属性,那么它的position:stat ...

  3. hexo干货系列:(七)hexo安装统计插件

    前言 前面介绍了如何让百度和谷歌收录我们的博客,那如何查看自己的博客每天被多少人访问呢~ 这里我介绍下hexo中如何使用统计插件,每天看到自己的博客访问量越来越高也是一种享受. 正文 开启统计功能 我 ...

  4. hust训练赛20160330--B - 又见LKity

    Problem 2122 又见LKity Time Limit: 1000 mSec Memory Limit : 32768 KB  Problem Description 嗨!大家好,在Templ ...

  5. 新版VS-code如何自动换行?

    文件  -> 首选项 -> 设置 -> 编辑器 找到 // 控制折行方式.可以选择: - "off" (禁用折行), - "on" (视区折行 ...

  6. Linux下出现launch failed.Binary not found的解决方案

    Linux下出现launch failed.Binary not found的解决方案: Project->Properties->C/C++Build->Settings-> ...

  7. APP后端处理表情的一些技巧

    app应用中文字夹带表情是个很常见的现象.甚至一些40多岁的大叔级用户,也喜欢在自己的昵称中夹带表情,在产品运营后发现这个现象,彻底颠覆了我的世界观. 在后台处理表情的时间,我遇到过下面3个问题: 1 ...

  8. 基于数据库的代码自动生成工具,生成JavaBean、生成数据库文档、生成前后端代码等(v6.0.0版)

    TableGo v6.0.0 版震撼发布,此次版本更新如下: 1.UI界面大改版,组件大调整,提升界面功能的可扩展性. 2.新增BeautyEye主题,界面更加清新美观,也可以通过配置切换到原生Jav ...

  9. java学习——关于搜索异常处理的总结

    根据网上的资料可以知道,异常处理是为了检测到程序运行中发生的非正常情况的检测而设立的一种机制,异常的英文单词是exception,字面翻译就是“意外.例外”的意思,也就是非正常情况.关于平常我们经常遇 ...

  10. 重装JDK后Tomcat和Eclipse的配置

    比如JDK之前是1.8.0_31的,升级之后变成了1.8.0_131之后,Tomcat需要做如下配置: 对于Eclipse中之前配置的Tomcat需要删除后重新添加一个.