BZOJ 1072 [SCOI2007]排列perm ——状压DP
【题目分析】
没什么好说的,水题。
代码比较丑,结果需要开long long 时间爆炸
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define ll long long
ll T,n,d,dp[1<<10][1001],a[11],l,_pow[12],fac[12],cnt[12];
char s[11];
ll cot(ll x)
{
ll ret=0;
while (x)ret+=(1&x),x>>=1;
return ret;
}
int main()
{
scanf("%lld",&T);
_pow[0]=1;F(i,1,10) _pow[i]=_pow[i-1]*10;
fac[0]=1;F(i,1,10) fac[i]=fac[i-1]*i;
while (T--)
{
memset(cnt,0,sizeof cnt);
scanf("%s",s);scanf("%lld",&d);l=strlen(s);
F(i,0,l-1) a[i]=s[i]-'0',++cnt[a[i]];
memset(dp,0,sizeof dp);
dp[0][0]=1;
F(i,0,(1<<l)-1)
{
ll tmp=cot(i);
F(j,0,d-1) F(k,0,l-1)
if (!(i&(1<<k)))
dp[i|(1<<k)][(j+_pow[tmp]*a[k])%d]+=dp[i][j];
}
ll ans=dp[(1<<l)-1][0];
F(i,0,9) ans/=fac[cnt[i]];
printf("%lld\n",ans);
}
}
BZOJ 1072 [SCOI2007]排列perm ——状压DP的更多相关文章
- bzoj 1072: [SCOI2007]排列perm 状压dp
code: #include <bits/stdc++.h> #define N 1005 using namespace std; void setIO(string s) { stri ...
- BZOJ 1072: [SCOI2007]排列perm 状态压缩DP
1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...
- [BZOJ1072][SCOI2007]排列perm 状压dp
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2488 Solved: 1546[Submit][St ...
- B1072 [SCOI2007]排列perm 状压dp
很简单的状压dp,但是有一个事,就是...我数组开大了一点,然后每次memset就会T,然后开小就好了!!!震惊!以后小心点这个问题. 题干: Description 给一个数字串s和正整数d, 统计 ...
- BZOJ 1072 [SCOI2007]排列perm
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1268 Solved: 782[Submit][Sta ...
- [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】
题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...
- BZOJ 1072 [SCOI2007]安排perm 如压力DP
意甲冠军:联系 方法:状压DP? 题解:这题事实上没啥好写的.不算非常难,推一推就能搞出来. 首先看到这个问题,对于被d整除这个条件,非常easy就想到是取余数为0,所以想到可能状态中刚開始含有取余数 ...
- 【以前的空间】bzoj 1072 [SCOI2007]排列perm
又颓废了一个下午,最近撸mc撸到丧失意识了,玩的有点恶心,于是找水题做,瞧不起颓废的自己啊. another水题. 这题题意很明显啦,就是找数字排列后组成的数去mod d=0后有多少种. 普通的搜索的 ...
- 暑假集训Day 4 P4163 [SCOI2007]排列 (状压dp)
状压dp (看到s的长度不超过10就很容易想到是状压dp了 但是这个题的状态转移方程比较特殊) 题目大意 给一个数字串 s 和正整数 d, 统计 s 有多少种不同的排列能被 d 整除(可以有前导 0) ...
随机推荐
- OPENFIRE 启动流程
在java>org>jivesoftware>openfire>starter,该类中的main方法启动,有图为证: 在start中方法分别调用unpackArchives和f ...
- ftpclient 遇到的一些问题
1. FTPFile[] files=ftpClient.listFiles(ftpDirectory); 没有数据 public static boolean ftpLogin(String ser ...
- 通过90行代码学会HTML5 WebSQL的4种基本操作
Web SQL数据库API是一个独立的规范,在浏览器层面提供了本地对结构化数据的存储,已经被很多现代浏览器支持了. 我们通过一个简单的例子来了解下如何使用Web SQL API在浏览器端创建数据库表并 ...
- Words Prefixed Trans-
transit v. Pass across or through (an area) The new large ships will be too big to transit the Panam ...
- 汇编segment
一个正常的应用程序被由若干个 segment组成. 定义 segment: SECTION .段名 SECTION 也可以小写 如: 定义数据段: section .data 定义代码段: sec ...
- Bootstrap历练实例:大的按钮
<!DOCTYPE html><html><head> <meta http-equiv="Content-Type" content=& ...
- OmniFocus
褪墨・时间管理 “把所有事情都从你的脑袋里弄出来.在事情出现就做好相关行动的一系列决定,而不是在事情爆发的时候.以合适的类别组织好你的项目的各种提醒以及下一步行动.保持你的系统更新和完整,及时进行回顾 ...
- JavaScript设计模式基础之闭包(终)
对于前端程序员来说闭包还是比较难以理解的, 闭包的形成与变量的作用域以及变量的生产周期密切相关,所以要先弄懂变量的作用域和生存周期. 1.变量作用域 变量的作用域,就是指变量的有效范围,通常我们指的作 ...
- OS复习
提纲 一 操作系统的定义,各章节名词定义. 分时多道- OS四大特征,五大功能. 二 进程 创建终止挂起激活 PCB 原语:创建终止挂起激活唤醒 互斥和同步,临界资源,临界区 信号量的基础概念,受保护 ...
- 【数学 exgcd】bzoj1407: [Noi2002]Savage
exgcd解不定方程时候$abs()$不能乱加 Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...