先看一道虚树普及题:给你一棵 $n$ 个点的树,$m$ 次询问,每次询问给你 $k$ 个关键点,求把这些点都连起来的路径并的最短长度。$1\le n,m\le 100000,\space 1\le \sum_{k} \le 100000$。

【SDOI2018】战略游戏(同时普及虚树)的更多相关文章

  1. 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】

    题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...

  2. [SDOI2018]战略游戏(圆方树+虚树)

    喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...

  3. 洛谷4606 SDOI2018战略游戏(圆方树+虚树)

    QWQ深受其害 当时在现场是真的绝望...... 现在再重新来看这个题 QWQ 根据题目所说,我们可以发现,对于每一个集合中的节点,我们实际上就是要求两两路径上的割点的数目 考虑到又是关于点双的题目, ...

  4. 洛谷P4606 [SDOI2018]战略游戏 [广义圆方树]

    传送门 思路 先考虑两点如何使他们不连通. 显然路径上所有的割点都满足条件. 多个点呢?也是这样的. 于是可以想到圆方树.一个点集的答案就是它的虚树里圆点个数减去点集大小. 可以把点按dfs序排序,然 ...

  5. 【BZOJ5329】【SDOI2018】战略游戏(圆方树,虚树)

    [BZOJ5329][SDOI2018]战略游戏(圆方树,虚树) 题面 BZOJ 洛谷 Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战 ...

  6. bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)

    bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...

  7. [SDOI2018]战略游戏 圆方树,树链剖分

    [SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...

  8. [bzoj5329] P4606 [SDOI2018]战略游戏

    P4606 [SDOI2018]战略游戏:广义圆方树 其实会了圆方树就不难,达不到黑,最多算个紫 那个转换到圆方树上以后的处理方法,画画图就能看出来,所以做图论题一定要多画图,并把图画清楚点啊!! 但 ...

  9. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

随机推荐

  1. (转)MyBatis框架的学习(五)——一对一关联映射和一对多关联映射

    http://blog.csdn.net/yerenyuan_pku/article/details/71894172 在实际开发中我们不可能只是对单表进行操作,必然要操作多表,本文就来讲解多表操作中 ...

  2. BC div2补题以及 复习模除 逆元__BestCoder Round #78 (div.2)

    第一题没话说 智商欠费 加老柴辅导终于过了 需要在意的是数据范围为2的63次方-1 三个数相加肯定爆了 四边形的定义 任意边小于其余三边之和 换句话说就是 最长边小于其余三边之和 这样的话问题转化为 ...

  3. 基本编程题 --python

    1.让Python帮你随机选一个饮品吧! import random listC = ['加多宝', '雪碧', '可乐', '勇闯天涯', '椰子汁'] print(random.choices(l ...

  4. 如何 Scale Up/Down Deployment?【转】

    伸缩(Scale Up/Down)是指在线增加或减少 Pod 的副本数.Deployment nginx-deployment 初始是两个副本. k8s-node1 和 k8s-node2 上各跑了一 ...

  5. python之set (集合)

    1. 集合是什么 set {1,2,3} 2. 集合怎么用 去重 集合是无序的 集合就是一个没有值的字典,遵循:唯一,无序,元素要求可哈希(不可变) 集合是可变的 2.1 增 方法一: s.updat ...

  6. 【树形背包】bzoj4033: [HAOI2015]树上染色

    仔细思考后会发现和51nod1677 treecnt有异曲同工之妙 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 ...

  7. 【Java_基础】java中的常量池

    1.java常量池的介绍 java中的常量池,通常指的是运行时常量池,它是方法区的一部分,一个jvm实例只有一个运行常量池,各线程间共享该运行常量池. java常量池简介:java常量池中保存了一份在 ...

  8. centos7下添加开机启动

    在/etc/systemd/system下创建weblogic .Service touch weblogic.Service 添加启动权限 chmod +x weblogic.Service 编辑w ...

  9. python--网络编程之socket

    一 . 网络编程 CS架构 客户端服务端架构 服务端:提供服务的 客户端:享受服务的 BS架构:浏览器和服务端 网络通信流程: 集线器:将所有连接上它的电脑全部联通起来 交换机:升级版的集线器 网卡: ...

  10. Python9-day4 作业

    #!/usr/bin/env python# -*- coding:utf-8 -*-# Author:Timli = ["alex", "eric", &qu ...