K-means算法Java实现
public class KMeansCluster {
private int k;//簇的个数 private int num = 100000;//迭代次数 private List<double> datas;//原始样本集 private String address;//样本集路径 private List<point> data = new ArrayList<point>(); private AbstractDistance distance = new AbstractDistance() { @Override public double getDis(Point p1, Point p2) { //欧几里德距离 return Math.sqrt(Math.pow(p1.getX() - p2.getX(), 2) + Math.pow(p1.getY() - p2.getY(), 2)); } }; public KMeansCluster(int k, int num, String address) { this.k = k; this.num = num; this.address = address; } public KMeansCluster(int k, String address) { this.k = k; this.address = address; } public KMeansCluster(int k, List<double> datas) { this.k = k; this.datas = datas; } public KMeansCluster(int k, int num, List<double> datas) { this.k = k; this.num = num; this.datas = datas; } private void check() { if (k == 0) throw new IllegalArgumentException("k must be the number > 0"); if (address == null && datas == null) throw new IllegalArgumentException("program can't get real data"); } /** * 初始化数据 * * @throws java.io.FileNotFoundException */ public void init() throws FileNotFoundException { check(); //读取文件,init data //处理原始数据 for (int i = 0, j = datas.size(); i < j; i++) data.add(new Point(i, datas.get(i), 0)); } /** * 第一次随机选取中心点 * * @return */ public Set<point> chooseCenter() { Set<point> center = new HashSet<point>(); Random ran = new Random(); int roll = 0; while (center.size() < k) { roll = ran.nextInt(data.size()); center.add(data.get(roll)); } return center; } /** * @param center * @return */ public List<cluster> prepare(Set<point> center) { List<cluster> cluster = new ArrayList<cluster>(); Iterator<point> it = center.iterator(); int id = 0; while (it.hasNext()) { Point p = it.next(); if (p.isBeyond()) { Cluster c = new Cluster(id++, p); c.addPoint(p); cluster.add(c); } else cluster.add(new Cluster(id++, p)); } return cluster; } /** * 第一次运算,中心点为样本值 * * @param center * @param cluster * @return */ public List<cluster> clustering(Set<point> center, List<cluster> cluster) { Point[] p = center.toArray(new Point[0]); TreeSet<distence> distence = new TreeSet<distence>();//存放距离信息 Point source; Point dest; boolean flag = false; for (int i = 0, n = data.size(); i < n; i++) { distence.clear(); for (int j = 0; j < center.size(); j++) { if (center.contains(data.get(i))) break; flag = true; // 计算距离 source = data.get(i); dest = p[j]; distence.add(new Distence(source, dest, distance)); } if (flag == true) { Distence min = distence.first(); for (int m = 0, k = cluster.size(); m < k; m++) { if (cluster.get(m).getCenter().equals(min.getDest())) cluster.get(m).addPoint(min.getSource()); } } flag = false; } return cluster; } /** * 迭代运算,中心点为簇内样本均值 * * @param cluster * @return */ public List<cluster> cluster(List<cluster> cluster) { // double error; Set<point> lastCenter = new HashSet<point>(); for (int m = 0; m < num; m++) { // error = 0; Set<point> center = new HashSet<point>(); // 重新计算聚类中心 for (int j = 0; j < k; j++) { List<point> ps = cluster.get(j).getMembers(); int size = ps.size(); if (size < 3) { center.add(cluster.get(j).getCenter()); continue; } // 计算距离 double x = 0.0, y = 0.0; for (int k1 = 0; k1 < size; k1++) { x += ps.get(k1).getX(); y += ps.get(k1).getY(); } //得到新的中心点 Point nc = new Point(-1, x / size, y / size, false); center.add(nc); } if (lastCenter.containsAll(center))//中心点不在变化,退出迭代 break; lastCenter = center; // 迭代运算 cluster = clustering(center, prepare(center)); // for (int nz = 0; nz < k; nz++) { // error += cluster.get(nz).getError();//计算误差 // } } return cluster; } /** * 输出聚类信息到控制台 * * @param cs */ public void out2console(List<cluster> cs) { for (int i = 0; i < cs.size(); i++) { System.out.println("No." + (i + 1) + " cluster:"); Cluster c = cs.get(i); List<point> p = c.getMembers(); for (int j = 0; j < p.size(); j++) { System.out.println("\t" + p.get(j).getX() + " "); } System.out.println(); } } }K-means算法Java实现的更多相关文章
- k近邻算法-java实现
最近在看<机器学习实战>这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习. 一 . K-近邻算法(KNN)概述 最简单最初级的分 ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? ...
- k近邻算法的Java实现
k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...
- KNN算法java实现代码注释
K近邻算法思想非常简单,总结起来就是根据某种距离度量检测未知数据与已知数据的距离,统计其中距离最近的k个已知数据的类别,以多数投票的形式确定未知数据的类别. 一直想自己实现knn的java实现,但限于 ...
- Floyd算法java实现demo
Floyd算法java实现,如下: https://www.cnblogs.com/Halburt/p/10756572.html package a; /** * ┏┓ ┏┓+ + * ┏┛┻━━━ ...
- k-means算法Java一维实现
这里的程序稍微有点变形.k_means方法返回K-means聚类的若干中心点.代码: import java.util.ArrayList; import java.util.Collections; ...
- 感知机学习算法Java实现
感知机学习算法Java实现. Perceptron类用于实现感知机, 其中的perceptronOriginal()方法用于实现感知机学习算法的原始形式: perceptronAnother()方法用 ...
- 一致哈希算法Java实现
一致哈希算法(Consistent Hashing Algorithms)是一个分布式系统中经常使用的算法. 传统的Hash算法当槽位(Slot)增减时,面临全部数据又一次部署的问题.而一致哈希算法确 ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
随机推荐
- mount机制3-/etc/mtab
这次查看fuse_mount_sys函数的执行过程,理解mount的各个阶段. 这个函数能够执行的前提是命令行使用root账户. 1. 首先,该函数仍然是主要使用 mount(const char * ...
- codeforces 690C2 C2. Brain Network (medium)(bfs+树的直径)
题目链接: C2. Brain Network (medium) time limit per test 2 seconds memory limit per test 256 megabytes i ...
- luogu 4782【模板】 2-SAT 问题
2-SAT就是给出$m$个限制表示$x==val_x || y==val_y$ 求出满足的解 每个点拆成两个点,如果$x$不满足则$y$一定满足,$y$不满足同理.这样我们连边,然后$tarjan$即 ...
- 关于return
return ; 相当于执行完跳转url后停止,return无返回值仅作停止作用,是指停止当前方法,是方法的终点 return null ; 代表引用类型的空值
- table中tr或者td的点击事件
直接把时间添加到table或者tbody上,只有下面的tr或者td才能促发事件,通过e.target可以获得当前点击tr或者td,这样就可以进行查询或者删除操作了 如果是删除,直接e.target.r ...
- AES加密算法(C++实现,附源码)
原创作品,转载请注明出自xelz's blog 博客地址:http://mingcn.cnblogs.com/ 本文地址:http://mingcn.cnblogs.com/archive/2010/ ...
- Cocos2d-X对常用Object-C特性的替换
平台的转换,总是让我们不自觉的去寻找两者的相同处,不过Cocos2d-X的确对很多Object-C的特性进行了模仿性质的封装,使熟悉Object-C的人能够在其中看到很多类似的概念而感到亲切. ...
- vue中minxin---小记
定义全局的方法,例如定义过滤器,在很多地方都会用到,就可以定义在minxin中 demo: 数据格式化 保留指定的小数位数 var mixin={ filters:{ fixedNum:functio ...
- 【旧文章搬运】360安全卫士HookPort.sys完美逆向
原文发表于百度空间,2009-11-08 这是第一次逆向一个企业级安全产品的核心代码,并完美替换原驱动正常工作============================================= ...
- Node.js之网游服务器实践
此文已由作者尧飘海授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 随着Node.js的不断发展与壮大,应用范围也越来越广泛,从传统的企业应用,到互联网使用,再到云计算的发展, ...