[UOJ386]鸽子固定器


题解
堆+贪心
题意就是给你\(n\)个物品,让你最多选\(m\)个
每个物品有两个属性\(a_i,b_i\)
最大化\((\sum_{a_i})^{dv}+(max(b_i)-min(b_i))^{ds}\)
首先后面的那个东西看着不是很舒服
但是按照\(b\)为关键字排个序就可以消除\(b\)的影响了
那么我们只考虑\(a\)即可
以后我们可以发现答案所选择的物品一定是一个区间内最大的\(k\)个物品
所以我们可以固定一个右端点
然后不断向左扫去找前\(k\)大的值
这个东西可以用一个小根堆来实现
一旦右端点被弹出就结束寻找
这个复杂度是\(O(n^2)\)
可以在找最大值时用\(ST\)表+二分做到\(O(nlognlogm)\)
这个复杂度应该就可以卡着过了
当然我们可以对于每个位置处理出ta前面离ta最近的比ta大的值的位置
这样就省去了\(ST\)表+二分
复杂度变成了\(O(nlogn)\)
但是由于两个\(log\)直接跑过去了我就懒得写一个\(log\)的了
代码
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define LL long long
const int M = 200005 ;
const int N = 20 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m , ds , dv ;
int lg[M] , sz[M] , val[M] , st[M][N] ;
LL ans , sum ;
struct Node { int sz , val ; } p[M] ;
struct Pion { int idx , val ; } ;
inline bool operator < (Pion a , Pion b) {
return a.val > b.val ;
}
inline bool operator < (Node a , Node b) {
return a.sz < b.sz ;
}
priority_queue < Pion > q ;
inline int query(int l , int r) {
int j = lg[r - l + 1] ;
return max( st[l][j] , st[r - (1 << j) + 1][j] ) ;
}
inline LL dc(LL sum , int x) {
if(x == 1) return sum ;
return 1LL * sum * sum ;
}
inline int Getpos(int rp) {
int l = 1 , r = rp , ret = -1 , mid ;
while(l <= r) {
mid = (l + r) >> 1 ;
if(query(rp - mid + 1 , rp) > q.top().val) ret = rp - mid + 1 , r = mid - 1 ;
else l = mid + 1 ;
}
return ret ;
}
int main() {
n = read() ; m = read() ; ds = read() ; dv = read() ;
for(int i = 2 ; i <= n ; i ++) lg[i] = lg[i >> 1] + 1 ;
for(int i = 1 ; i <= n ; i ++) p[i].sz = read() , p[i].val = read() ;
sort(p + 1 , p + n + 1) ;
for(int i = 1 ; i <= n ; i ++) {
sz[i] = p[i].sz , val[i] = p[i].val ;
st[i][0] = val[i] ;
}
for(int j = 1 ; j <= lg[n] ; j ++)
for(int i = 1 ; i + (1 << j) - 1 <= n ; i ++)
st[i][j] = max( st[i][j - 1] , st[i + (1 << (j - 1))][j - 1] ) ;
for(int i = 1 , pos ; i <= n ; i ++) {
sum = 0 ;
while(!q.empty()) q.pop() ;
for(int j = i ; j >= i - m + 1 && j >= 1 ; j --) {
q.push((Pion) { j , val[j] }) ;
sum += val[j] ;
ans = max( ans , dc(sum , dv) - dc(sz[i] - sz[j] , ds) ) ;
}
pos = i - m + 1 ; if(pos <= 1) continue ;
bool exist = true ;
while(exist) {
if(q.top().idx == i) break ;
pos = Getpos(pos - 1) ; if(pos < 0) break ;
sum += val[pos] - q.top().val ;
ans = max( ans , dc(sum , dv) - dc(sz[i] - sz[pos] , ds) ) ;
q.pop() ; q.push((Pion) { pos , val[pos] }) ;
}
}
printf("%lld\n",ans) ;
return 0 ;
}
[UOJ386]鸽子固定器的更多相关文章
- #386. 【UNR #3】鸽子固定器
#386. [UNR #3]鸽子固定器 题目链接 官方题解 分析: 神奇的做法+链表. 首先按照大小排序. 对于小于选择小于m个物品的时候,这个m个物品一定是一段连续的区间.因为,如果中间空着一个物品 ...
- UOJ#386. 【UNR #3】鸽子固定器(链表)
题意 题目链接 为了固定S**p*鸽鸽,whx和zzt来到鸽具商店选购鸽子固定器. 鸽具商店有 nn 个不同大小的固定器,现在可以选择至多 mm 个来固定S**p*鸽鸽.每个固定器有大小 sisi 和 ...
- 【UOJ#386】【UNR#3】鸽子固定器(贪心)
[UOJ#386][UNR#3]鸽子固定器(贪心) 题面 UOJ 题解 一个不难想到的暴力做法是把东西按照\(s\)排序,这样子我们枚举极大值和极小值,那么我们选择的一定是这一段之间\(v\)最大的那 ...
- 【UOJ386】【UNR #3】鸽子固定器 链表
题目描述 有 \(n\) 个物品,每个物品有两个属性:权值 \(v\) 和大小 \(s\). 你要选出 \(m\) 个物品,使得你选出的物品的权值的和的 \(d_v\) 次方减掉大小的极差的 \(d_ ...
- uoj386 【UNR #3】鸽子固定器
link (似乎很久没写题解了) 题意: n个物品,每个物品有a,b两个值,给定A,B,现在最多选其中m个,要求最大化选出的物品中[b权值和的B次方-a极差的A次方]. $n\leq 2\times ...
- UOJ.386.[UNR #3]鸽子固定器(贪心 链表)
题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品 ...
- uoj#386. 【UNR #3】鸽子固定器(乱搞)
传送门 题解 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define fp(i ...
- UNR#3 Day1——[ 堆+ST表+复杂度分析 ][ 结论 ][ 线段树合并 ]
地址:http://uoj.ac/contest/45 第一题是鸽子固定器. 只会10分.按 s 从小到大排序,然后 dp[ i ][ j ][ k ] 表示前 i 个元素.已经选了 j 个.最小值所 ...
- 经典灰鸽子lcx
方法1路由配置 在路由器配置 进入虚拟服务器 填入ip 端口 就可以了方法2内网域名解析想以前的花生客 科迈都有这项免费业务但现在基本不提供了如果那个网站还有内网解析的功能 大家一定要发上来哦方法3p ...
随机推荐
- 框架-Jquerychange事件数值计算
//优惠率计算优惠价 $("body").on("change", "#Rate", function() { ...
- how to read openstack code: loading process
之前我们了解了neutron的结构,plugin 和 extension等信息.这一章我们看一下neutron如何加载这些plugin和extension.也就是neutron的启动过程.本文涉及的代 ...
- 【python】SHA1 算法
http://blog.163.com/sh_wenfen/blog/static/99708242007231103936938/
- 九度OJ1004 Median
题目描写叙述: Given an increasing sequence S of N integers, the median is the number at the middle positio ...
- Visual Studio Visual assistant注释也做拼写检查怎么办
1 打开Visual Assistant 2 在Advanced中找到Underlines,取消勾选"Underline spelling errors in comments and ...
- 深入浅出Redis(三)高级特性:管道
Redis是一个响应式的服务,当client发送一个请求后,就处于堵塞状态等待Redis返回结果. 这样一次命令消耗的时间就包含三个部分:请求从client到server的时间.结果从server到c ...
- antd 离线 icon
讲你下载下来的官方提供的字体库解压后所有文件复制到node-modules/antd/dist目录下 创建新的文件夹iconfont 在你项目生成的css入口文件对应的源码less文件开始添加如下两句 ...
- dm385的分辨率切换
建议用两个RSZ的输出来完成切换分辨率功能,帧率可以通过软件丢帧来实现. 两个SWMS增加了两个1080p60的读和写,对系统影响是比较大的. http://www.deyisupport.com/q ...
- (八)unity4.6Ugui中文教程文档-------概要-UGUI Rich Text
大家好,我是孙广东. 转载请注明出处:http://write.blog.csdn.net/postedit/38922399 更全的内容请看我的游戏蛮牛地址:mod=guide&view ...
- 【iOS系列】-UITableViewCell的展开与收缩的实现思路
UITableViewCell的展开与收缩的实现思路 现在项目中很多地方都会用到,所以我这里介绍一种可以复用的思路,这与文章后面的Swift的实现思路不同,具体大家可自行对比. Demo项目地址 开始 ...