传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2818

若gcd(x, y) = 1,则gcd(x * n, y * n) = n。那么,当y固定不变时,小于y且与y互质的个数为phi(y),所以此时对答案的贡献是phi(y) * 小于等于 n / y的素数的个数 * 2,最后乘2是因为数对是有序的。到最后,还要加上小于等于n的素数个数,因为(p, p)这种x = y的数对并没有计算进去。

#include <cstdio>

const int maxn = 10000005;

int n, prime[700000], tot, phi[maxn], mx, now;
char book[maxn];
long long ans; int main(void) {
scanf("%d", &n);
for (int i = 2; i <= n; ++i) {
if (!book[i]) {
prime[++tot] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= tot; ++j) {
if (i * prime[j] > n) {
break;
}
book[i * prime[j]] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else {
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
} int lmt = n >> 1;
now = tot;
for (int i = 2; i <= lmt; ++i) {
mx = n / i;
while (mx < prime[now]) {
--now;
}
ans += phi[i] * now;
}
printf("%lld\n", (ans << 1) + tot);
return 0;
}

  

_bzoj2818 Gcd【线性筛法 欧拉函数】的更多相关文章

  1. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  2. The Euler function(线性筛欧拉函数)

    /* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...

  3. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

  4. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  5. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  6. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  7. HDU 1695 GCD (容斥原理+欧拉函数)

    题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...

  8. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  9. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

随机推荐

  1. centos、mac的grafana安装和简单使用

    1.安装: 参考官方文档安装说明:https://grafana.com/grafana/download Redhat & Centos(64 Bit): wget https://s3-u ...

  2. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  3. 关闭Windows 2003/2008中IE增强的安全配置的方法

           在使用Windows Server 2003/2008操作系统时,打开IE浏览网页时,发现浏览器总提示 "是否需要将当前访问的网站添加到自己信任的站点中去",要是不信 ...

  4. office outlook 無法開啟 outlook 視窗

    例如[無法啟動Microsoft Office Outlook.無法開啟Outlook 視窗.] 1.啟動 Outlook 安全模式outlook.exe /safe2.清除並重新產生目前設定檔的功能 ...

  5. [javase学习笔记]-9.2 单继承与多重继承

    这一节我们来看java中的单继承和多重继承. 在java语言中,支持的是单继承,不直接支持多继承,可是对C++中的多继承进行了改良. 那么什么是单继承和多继承呢? 单继承:一个子类仅仅能有一个直接父类 ...

  6. Android拍照、摄像方向旋转的问题 代码具体解释

    近期做了个拍照.摄像的应用.遇到了拍照.摄像的图像相对于现实.翻转了90度.原因:相机这个硬件的角度是横屏的角度,所以会出现都是横屏的. 1.照相.摄影预览图像的正确角度显 示: public sta ...

  7. IE将開始屏蔽旧版ActiveX控件

    微软IE团队上周宣布将在IE中屏蔽旧版本号的ActiveX控件以加强IE的安全性.首先会被禁用的旧版本号ActiveX控件包括: J2SE 1.4, 低于update 43 的版本号 J2SE 5.0 ...

  8. ZOJ 3228 Searching the String (AC自己主动机)

    题目链接:Searching the String 解析:给一个长串.给n个不同种类的短串.问分别在能重叠下或者不能重叠下短串在长串中出现的次数. 能重叠的已经是最简单的AC自己主动机模板题了. 不能 ...

  9. PHP出现Warning: A non-numeric value encountered问题的原因及解决方法

    本文介绍php出现Warning: A non-numeric value encountered问题,用实例分析出现这种错误的原因,并提供避免及解决问题的方法. <?php error_rep ...

  10. pymssql.connect(server='.', user='', password='', database='', timeout=0, login_timeout=60, charset='UTF-8', as_dict=False, host='', appname=None, port='1433', conn_properties, autocommit=False, tds_

    http://pymssql.org/en/stable/ref/pymssql.html """ This is an effort to convert the py ...