Description

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 
Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

Sample Input

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

Sample Output

8
4000
解题思路:题意很清楚,就是找最大覆盖矩形的面积。这里要用到单调递增栈,相关讲解-->单调栈总结。其作用就是找到当前hi向左向右能延伸出最大长度的区间,即[L,R),最后最大的矩形面积就是max{(R[i]-L[i])*h[i]|0<=i<n}。时间复杂度是O(n)。
AC代码:
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<stack>
using namespace std;
typedef long long LL;
const int maxn=1e5+;
int n,L[maxn],R[maxn];LL res,h[maxn];
stack<int> st;
int main(){
while(~scanf("%d",&n)&&n){
while(!st.empty())st.pop();memset(L,,sizeof(L));memset(R,,sizeof(R));
for(int i=;i<n;++i)scanf("%lld",&h[i]);
for(int i=;i<n;++i){
while(!st.empty()&&h[st.top()]>=h[i])st.pop();//找到i左边第一个比hi小的j右边一个点j+1,左闭
L[i]=st.empty()?:st.top()+;//如果栈空,说明hi不大于左边所有高度,那么区间左端点可延伸至0,这里为了方便计算区间长度
st.push(i);//再压入当前左端点值i
}
while(!st.empty())st.pop();res=;
for(int i=n-;i>=;--i){
while(!st.empty()&&h[st.top()]>=h[i])st.pop();//找到i右边第一个比hi小的j,右开
R[i]=st.empty()?n:st.top();//如果栈空,说明hi不大于右边所有高度,那么区间右端点可延伸至n,同样为了方便计算区间长度
st.push(i);//再压入当前右端点值i
}
for(int i=;i<n;++i)//找最大面积
res=max(res,h[i]*(R[i]-L[i]));
cout<<res<<endl;
}
return ;
}

题解报告:poj 2559 Largest Rectangle in a Histogram(单调栈)的更多相关文章

  1. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  2. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  3. POJ 2559 Largest Rectangle in a Histogram (单调栈或者dp)

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15831 ...

  4. PKU 2559 Largest Rectangle in a Histogram(单调栈)

    题目大意:原题链接 一排紧密相连的矩形,求能构成的最大矩形面积. 为了防止栈为空,所以提前加入元素(-1,0) #include<cstdio> #include<stack> ...

  5. [POJ 2559]Largest Rectangle in a Histogram 题解(单调栈)

    [POJ 2559]Largest Rectangle in a Histogram Description A histogram is a polygon composed of a sequen ...

  6. poj 2559 Largest Rectangle in a Histogram 栈

    // poj 2559 Largest Rectangle in a Histogram 栈 // // n个矩形排在一块,不同的高度,让你求最大的矩形的面积(矩形紧挨在一起) // // 这道题用的 ...

  7. stack(数组模拟) POJ 2559 Largest Rectangle in a Histogram

    题目传送门 /* 题意:宽度为1,高度不等,求最大矩形面积 stack(数组模拟):对于每个a[i]有L[i],R[i]坐标位置 表示a[L[i]] < a[i] < a[R[i]] 的极 ...

  8. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  9. POJ2559 Largest Rectangle in a Histogram —— 单调栈

    题目链接:http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Lim ...

随机推荐

  1. 书评第003篇:《0day安全:软件漏洞分析技术(第2版)》

    本书基本信息 丛书名:安全技术大系 作者:王清(主编),张东辉.周浩.王继刚.赵双(编著) 出版社:电子工业出版社 出版时间:2011-6-1 ISBN:9787121133961 版次:1 页数:7 ...

  2. properties文件读取配置信息

    public static void main(String[] args){ String printerName=""; String path = "C:\\Bar ...

  3. 针对OpenSSL吐嘈的吐嘈-如此唱反调

    前些天写了一篇<令人作呕的OpenSSL>,顿时引来了大量的恶评.令我非常尴尬,同一时候也认为悲哀. 假设说you can you up之类的,我认为起码这人看出了我的本意,仅仅是怀疑我的 ...

  4. 在做java 的web开发,为什么要使用框架

    现在做项目都会使用框架,现在很常见的框架就是SSH(Struts+SpringMVC+spring+hibernate),SSM(Struts/springMVC+Spring+Hibernate), ...

  5. iOS设备,fixed布局出问题

    window.deviceId = '{{$deviceId}}'; window.iOS = navigator.userAgent.match(/(iPad|iPhone|iPod)/g) ? t ...

  6. YTU 2402: Common Subsequence

    2402: Common Subsequence 时间限制: 1 Sec  内存限制: 32 MB 提交: 63  解决: 33 题目描述 A subsequence of a given seque ...

  7. div+css布局教程系列1

    <!doctype html><html><head><meta charset="utf-8"><title>简单布局 ...

  8. 使用JSTL 对在页面上对 0,0,1 的分割处理 forTokens

    使用JSTL 对在页面上对 0,0,1 的分割处理 <tr onmouseover="currentcolor=this.style.backgroundColor;this.styl ...

  9. I.MX6 Android shutdown shell command

    /******************************************************************************* * I.MX6 Android shu ...

  10. 牛客练习赛13D:幸运数字Ⅳ(康托展开) F:关键字排序

    链接:https://www.nowcoder.com/acm/contest/70/D 题目: 定义一个数字为幸运数字当且仅当它的所有数位都是4或者7. 比如说,47.744.4都是幸运数字而5.1 ...