python中的生成器(一)
我们先考虑一个场景:
有个情景需要循环输出1——10.
这里给两种方法:
list1 = [1,2,3,4,5,6,7,8,9,10]
for i in list1:
print(i)
for i in range(1,11):
print(i)
两种方式输出结果一样,但是我们考虑一下,如果要求输出1——1000000呢?
第一种方式会导致list1里面真实放入1000000长度的数字,占用空间很大,明显不是明智之举,
再来看第二种方法,用到range帮助我们生成数据,在python3中range的本质就是一个生成器。
在python2中:range返回的是一个等差列表,比如[0,1,2,3,4,5,6,7,```````], 而xrange才是返回一个生成器对象. 即python2 range()==[```````````````````], python2 xrange()==python3 range()
具体对比查看:https://blog.csdn.net/humanking7/article/details/45950967
(一)这里写一个函数,在生成器函数的名称中加上gen 前缀或后缀,不过这不是必要的习惯:
def gen_create_range(start,end): while start < end:
yield start
start += 1 for i in gen_create_range(1,5):
print(i)
#output:
1
2
3
4
这个函数没有return 但是可以有返回值,注意看里面有个yield关键字,这个函数和range()函数很像。
(二)什么是生成器:函数定义中包含yield关键字那么函数就变成了生成器。
概念:如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator
生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
g= (x**2 for x in range(5)) print g >>
<generator object <genexpr> at 0x0000000002771798> #如果、
L=[x**2 for x in range(5)] print L >>
[0, 1, 4, 9, 16]
也就是说:创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator
1).函数中只要出现了yield语句就会将其转变成一个生成器函数
特别之处在于,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator
与普通函数不一样,生成器值会在迭代操作的时候才能运行.yiled可以把函数中断,保存状态和继续执行的能力
好比一个武打片里面的慢镜头回放,yield把函数里面你要保存的值中断并保存,你通过调用next()来回放
比如:
def countdown(n):
print('Starting to count from',n)
while n>0:
yield n
n-=1
print('done') c=countdown(3)
print(c)
>>
<generator object countdown at 0x0000000002821828>
#表示这是一个生成器
2).调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值
比如:
c=countdown(3) #run the first yield and emit a value print(next(c)) >> Starting to count from 3 3 #run the next yield print(next(c)) >> 2 #run the next yield print(next(c)) >> 1 #run the next yield print(next(c)) >> done print next(c) StopIteration
深入解释:
你把yield想象成时间断点,运行一次next就回放一下,看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值
第一次next()是打印了 print('Starting to count from',n),提取第一次的保存值是3
第二次再运行next()是继续在while里面的断点接着走,所以没有打印print('Starting to count from',n), 而是直接提取第二次的保存值2
第三次再运行next()是继续在while里面的断点接着走,所以直接输出1
第四次再运行next()的时候,发现yield缓存的武打片慢镜头都已经放完了,所以输出done之后,报了个错StopIteration
3).生成器函数用for循环
for n in countdown(6):
print(n) >> Starting to count from 6 6 5 4 3 2 1 done
正确的方法是使用for循环,因为generator也是可迭代对象
4yield 与 return相爱相杀
1).在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration
def gen1():
yield 100 g1=gen1()
print(next(g1))
>>100
第一次调用next(g1)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。
print(next(g1))
>>
Traceback (most recent call last):
File "C:/about_gen.py", line 71, in <module>
print(next(g1))
StopIteration
程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常
2).如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代
def gen2():
yield 200
return
yield 300 g2=gen2()
print(next(g2))
>>200
# 程序停留在执行完yield 200语句后的位置 print(next(g2))
>>
File "C:/about_gen.py", line 82, in <module>
print(next(g2))
StopIteration
程序发现下一条语句是return,所以抛出StopIteration异常,这样yield 'b'语句永远也不会执行
生成器这个概念一开始很难理解,有点古怪,但是时间久了才知道他的妙用
另外生成器函数是没有办法使用return来返回值
python中的生成器(一)的更多相关文章
- python中的生成器函数是如何工作的?
以下内容基于python3.4 1. python中的普通函数是怎么运行的? 当一个python函数在执行时,它会在相应的python栈帧上运行,栈帧表示程序运行时函数调用栈中的某一帧.想要获得某个函 ...
- Python学习-39.Python中的生成器
先回顾列表解释 lista = range(10) listb = [elem * elem for elem in lista] 那么listb就将会是0至9的二次方. 现在有这么一个需求,需要存储 ...
- python中的生成器(二)
一. 剖析一下生成器对象 先看一个简单的例子,我们创建一个生成器函数,然后生成一个生成器对象 def gen(): print('start ..') for i in range(3): yield ...
- Python中的生成器与yield
对于python中的yield有些疑惑,然后在StackOverflow上看到了一篇回答,所以搬运过来了,英文好的直接看原文吧. 可迭代对象 当你创建一个列表的时候,你可以一个接一个地读取其中的项.一 ...
- 聊聊Python中的生成器和迭代器
Python中有两个重要的概念,生成器和迭代器,这里详细记录一下. 1. 生成器 什么是生成器呢? 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包 ...
- python中的生成器(generator)总结
1.实现generator的两种方式 python中的generator保存的是算法,真正需要计算出值的时候才会去往下计算出值.它是一种惰性计算(lazy evaluation). 要创建一个gene ...
- python学习之【第十三篇】:Python中的生成器
1.为什么要有生成器? 在Python中,通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅 ...
- python中的生成器、迭代器、闭包、装饰器
迭代器 迭代是访问集合元素的一种方式.迭代器是一个可以记住遍历的位置的对象.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 可迭代对象 以直接作用于 for ...
- python中的生成器和迭代器
前言: 我们来了解一下什么是python中生成器.了解一下python生成器是什么,以及生成器在python编程之中能起到什么样的作用. 定义: 生成器和迭代器 通过列表生成式,我们可以直接创建一个列 ...
随机推荐
- Oracle E-Business Suite并发请求的优先级(Concurrent Request Priority)
不少用户抱怨自己的Oracle E-Business Suite并发请求(Concurrent Request)提交了好久,但还是一直在排队,等了好久还没有执行.用户希望对于一些重要性程度高.响应要求 ...
- D3.js的基础部分之数组的处理 映射(v3版本)
映射(Map) 映射(Map)是十分常见的一种数据结构,由一系列键(key)和值(value)组成的.每个key对应一个value,根据key可以获取和设定value,也可以根据key来查询val ...
- SQL SERVER 查找锁信息
通过系统的存储过程 sp_who 或 sp_who2 可以查找出所有的锁信息, 但是看不出是哪个表, 什么语句 当使用 sp_who 或 sp_who2 查找锁信息的时候, 有个 spid 信息, ...
- Python学习之全局变量与global
刚学习Python,遇到个问题:为什么有些定义在函数外的变量可以直接被函数使用,有些就不行呢? 如: count = 0 def change(): count += 1 change() # 报错 ...
- java—ThreadLocal模式与OSIV模式(53)
ThreadLocal: 维护线程局部的变量. ThreadLocal 不是线程.它就是一个Map.可以保存对象. 它保存的对象,只与当前线程相关. 当一个线程还没有运行完成时,如果不想传递数据,可以 ...
- MyBatis入门程序(基于XML配置)
创建一个简单的MyBatis入门程序,实现对学生信息的增删改查功能(基于XML配置) 一.新建一个Java工程,导入MyBatis核心jar包.日志相关的jar包以及连接Oracle数据库所需驱动包, ...
- kali linux之无线渗透(续)
Airolib 设计用于存储ESSID和密码列表,计算生成不变的PMK(计算资源消耗型) PMK在破解阶段被用于计算PTK(速度快,计算资源要求少) 通过完整性摘要值破解密码SQLite3数据库存储数 ...
- C# 键盘中的按键对应KeyValue
首先先看一下什麼情況下需要對按鍵進行識別: KeyPress事件響應函數中,有KeyPressEventArgs, 對應於e.KeyChar; KeyDown事件響應中有KeyEventArgs 求取 ...
- leecode刷题(18)-- 报数
leecode刷题(18)-- 报数 报数 描述: 报数序列是一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 1112 ...
- BZOJ 3813--奇数国(线段树&欧拉函数&乘法逆元&状态压缩)
3813: 奇数国 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 755 Solved: 432[Submit][Status][Discuss] ...