Counting swaps
给你一个1~n的排列,问用最少的交换次数使之变为递增排列的方案数\(mod\ 10^9+7\),1 ≤ n ≤ 10^5。
解
显然最少的交换次数不定,还得需要找到最小交换次数,而考虑到交换为复杂的过程,考虑状态的性质,所以不难想到画出,+为箭头指向方向
_ _
| + | +
2 1 4 3
+ | + |
|_| |_|
于是你会发现实际上我们的变换为递增序列,即把所有的环都变成自环,而交换两个数字即拆环,所以不难知道,一个环拆掉的最少的次数为环的大小-1(因为你对一个环进行一次交换操作,就变成了两个环,以此类推,拆成n个环,要操作n-1次)。
有了这样一个想法,于是考虑环的组合计数问题的方法,可以以拆环为状态划分来设递推方程,于是设\(f[i]\)表示长度为i的环的变成全部是自环的最少操作次数的方案数,拆成两个环又有不同的拆分方式,于是设\(T[i][j]\)表示拆成两个长i,j的环的方案数,于是我们有
\]
\]
于是,设初始序列为长\(l_1,l_2...,l_m\)的环构成的,易知
\]
但是对于f找规律,我们发现\(f[i]=i^{i-2}\),于是我们可以利用矩阵快速幂,时间复杂度应为\(O(nlog(n))\)。
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define ll long long
#define yyb 1000000009
#define lsy 1000000007
#define _ putchar('\n')
using namespace std;
int num[100001];
bool check[100001];
ll dp[100001],jc[100001],jv[100001];
il ll pow(ll,ll);
il void prepare();
template<class free>void pen(free);
template<class free>il void read(free&);
int main(){
int cjx,i,j,n,len,tot;ll ans;
prepare(),read(cjx);
while(cjx--){
read(n),memset(check,0,sizeof(check));
for(i=1;i<=n;++i)read(num[i]);tot&=0,ans=1;
for(i=1;i<=n;++i)
if(!check[i]){
j=i,++tot,len&=0;
do j=num[j],++len,check[j]|=true;
while(i!=j);
ans=ans*dp[len]%yyb*jv[len-1]%yyb;
}ans=ans*jc[n-tot]%yyb,pen(ans),_;
}
return 0;
}
template<class free>
void pen(free x){
if(x>9)pen(x/10);putchar(x%10+48);
}
il ll pow(ll x,ll y){
ll ans(1);
while(y){
if(y&1)ans=ans*x%yyb;
x=x*x%yyb,y>>=1;
}return ans;
}
void prepare(){
ri int i,j;jc[1]=jc[0]=jv[1]=jv[0]=dp[1]=1;
for(i=2;i<=100000;++i)
jc[i]=jc[i-1]*i%yyb,jv[i]=
pow(jc[i],lsy),dp[i]=pow(i,i-2);
}
template<class free>
il void read(free& x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}
Counting swaps的更多相关文章
- CH3602 Counting Swaps
题意 3602 Counting Swaps 0x30「数学知识」例题 背景 https://ipsc.ksp.sk/2016/real/problems/c.html Just like yeste ...
- 洛谷P4778 Counting swaps 数论
正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...
- luogu P4778 Counting swaps
计数套路题?但是我连套路都不会,,, 拿到这道题我一脸蒙彼,,,感谢@poorpool 大佬的博客的指点 先将第\(i\)位上的数字\(p_i\)向\(i\)连无向边,然后构成了一个有若干环组成的无向 ...
- LFYZOJ 104 Counting Swaps
题解 #include <iostream> #include <cstdio> #include <algorithm> #include <cmath&g ...
- lfyzoj104 Counting Swaps
问题描述 给定你一个 \(1 \sim n\) 的排列 \(\{p_i\}\),可进行若干次操作,每次选择两个整数 \(x,y\),交换 \(p_x,p_y\). 请你告诉穰子,用最少的操作次数将给定 ...
- luoguP4778 Counting swaps
题目链接 题解 首先,对于每个\(i\)向\(a[i]\)连边. 这样会连出许多独立的环. 可以证明,交换操作不会跨越环. 每个环内的点到最终状态最少交换步数是 \(环的大小-1\) 那么设\(f[i ...
- P4778 Counting Swaps 题解
第一道 A 掉的严格意义上的组合计数题,特来纪念一发. 第一次真正接触到这种类型的题,给人感觉好像思维得很发散才行-- 对于一个排列 \(p_1,p_2,\dots,p_n\),对于每个 \(i\) ...
- 0x36 组合计数
组合计算的性质: C(n,m)= m! / (n!(m-n)!) C(n,m)=C(m-n,m); C(n,m)=C(n,m-1)+C(n-1,m-1); 二项式定理:(a+b)^n=sigema(k ...
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
随机推荐
- 类class思维导图
- 京东-Java开发工程师-一面
时间:2017-4-7 16:47 时长:32分19秒 类型:笔试前电话面试 之前打过一个电话过来说了一声,下午就直接打过来面试了,没有自我介绍貌似 1. 你做的这些东西是什么样的? 2. 选一个你觉 ...
- word转html实现预览(asp.net)
word转html 需要通过nuget 安装 Microsoft.Office.Interop.Word Microsoft.Office.Interop.Excel 使用 Microsoft.Asp ...
- 折半插入排序-ACM题
第一种实现方式:(本人一开始对cin的使用不是很熟悉,看了一些人得博客详解后才有了第一种方式的实现,自己都被惊讶到了so easy:题目在下面) // // main.cpp // BinaryIns ...
- LeetCode刷题第一天
1 . 两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用 ...
- Hive & SparkSQL 比较
Hive 在 Hadoop 集群上所有数据的访问都是通过 Java 编写的 MapReduce 作业来完成的,这些让 Java 程序员来完成没有问题. 但是对 SQL 程序员来说,写 MapRedu ...
- Jenkins2.138配置slave节点时,启动方法只有两个选项
Jenkins2.138配置slave节点时,启动方法只有两个选项,并没有通过javaweb代理启动这个选项 解决办法 全局安全配置->代理->选择随机选取
- 解决docker启动错误 error creating overlay mount to /var/lib/docker/overlay2
原文 最近在centos7.1使用docker运行redis镜像,出现下面的错误: /usr/bin/docker-current: Error response from daemon: error ...
- sublime text3 jQuery Emmet 插件 安装方法,快捷键
preference->package control->install package> emmet / jQuery 先说jQuery jQuery 集成了很多JS的补全功能.例 ...
- 最简单,有效的学习mysql教程(一)
数据库 1 定义 数据库,可以简单的解释为:高效的存储和处理数据的介质(主要分为磁盘和内存两种). 2 分类 根据数据库存储介质的不同,可以将其分为两类,即:关系型数据库(SQL)和非关系型数据库(N ...