【BZOJ1951】[SDOI2010]古代猪文

题面

bzoj

洛谷

题解

题目实际上是要求

$ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $

而这个奇怪的模数实际上是个素数,由欧拉定理

$ G^{\sum d|n\;C_n^d}\;mod \; 999911659=G^{\sum d|n\;C_n^d\;mod\;99911658}\;mod \; 999911659 $

主要是解决

$ \sum d|n\;C_n^d\;mod\;999911658 $

注意到

$ 999911658=2×3×4679×35617 $

所以可以对每个质因数枚举约束,用$Lucas$求组合数

最后$CRT$合并即可,注意要特判

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll Mod = 999911658;
ll N, G, fac[50005], ans[10], b[10] = {0, 2, 3, 4679, 35617};
ll fpow(ll x, ll y, ll p) {
ll res = 1;
while (y) {
if (y & 1ll) res = res * x % p;
x = x * x % p;
y >>= 1ll;
}
return res;
}
void init (ll p) { fac[0] = 1; for (ll i = 1; i <= p; i++) fac[i] = i * fac[i - 1] % p; }
ll C(ll n, ll m, ll p) {
if (n < m) return 0;
return fac[n] * fpow(fac[m], p - 2, p) % p * fpow(fac[n - m], p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p) {
if (!m || !n) return 1;
return Lucas(n / p, m / p, p) * C(n % p, m % p, p) % p;
}
ll CRT() {
ll res = 0;
for (int i = 1; i <= 4; i++)
res = (res +
ans[i] * (Mod / b[i]) % Mod *
fpow(Mod / b[i], b[i] - 2, b[i])
% Mod) % Mod;
return res;
}
int main () {
cin >> N >> G;
if (G % (Mod + 1) == 0) return puts("0") & 0;
for (int p = 1; p <= 4; p++) {
init(b[p]);
for (int i = 1; i * i <= N; i++) {
if (N % i == 0) {
ans[p] = (ans[p] + Lucas(N, i, b[p])) % b[p];
if (i * i != N) ans[p] = (ans[p] + Lucas(N, N / i, b[p])) % b[p];
}
}
}
printf("%lld\n", fpow(G, CRT(), Mod + 1));
return 0;
}

【BZOJ1951】[SDOI2010]古代猪文的更多相关文章

  1. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  2. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  3. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  4. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  5. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  6. bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)

    https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...

  7. bzoj1951 [Sdoi2010]古代猪文 ——数论综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...

  8. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  9. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. PhoneGap 介绍

    一.PhoneGap 是什么 1.PhoneGap 是一个用基于 HTML,CSS 和 JavaScript 的,创建移动跨平台移动应用程序的快速开发框架. 2.它使开发者能够利用 iPhone,An ...

  2. ZOJ-3279 Ants 树状数组 + 二分

    题目链接: https://cn.vjudge.net/problem/ZOJ-3279 题目大意: 有1到n 那个level 每一个level有a[i]只蚂蚁两种操作 p a b 把第a个level ...

  3. myeclipse解决JSP文件里script背景颜色的调整

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/UP19910522/article/details/27971401 1导入MyEclipse的主题 ...

  4. 1. Docker基础命令

    本文简要介绍Docker的基础命令,目的在于快速入门Dokcer,Docker的完整命令可以参考Docker官方手册. 0. 安装Docker Docker当前分为企业版(Docker Enterpr ...

  5. 简单属性margin和padding

    关于margin属性的介绍 margin:20px 上 右 下 左 都是20px margin:20px 40 px 上 下 20px 左 右 40px margin:20px 40px  60px ...

  6. 码农视角 - Angular 框架起步

    开发环境 1.npm 安装最新的Nodejs,便包含此工具.类似Nuget一样的东西,不过与Nuget不同的是,这玩意完全是命令行的.然后用npm来安装开发环境,也就是下边的angular cli. ...

  7. Dubbo实践(十七)telnet

    telnet的介绍可以参看<java网络编程3>中有一段介绍telnet,我们可以理解为,telnet命令是通过socket协议与服务器端通信.Dubbo提供了telnet命令去查看服务功 ...

  8. DPDK测试用例(sample)编译

    前言 要使用DPDK的测试用例,必须先进行编译,以此记录编译的操作,方便日后查找 编译用例 设置环境变量,将DPDK的目录路径添加到编译代码中,RTE_SDK指示DPDK目录路径: export RT ...

  9. ios开发遇到的问题

    运行后界面空白,Xcode跳转到APPDelegate.swift文件提示如下 第一种可能原因: 做输出口后在代码中重新命名了输出口 解决方法: 右键控件关闭输出口的连接,变回+号,将它重新连到代码的 ...

  10. 【Zookeeper】编程实战之Zookeeper分布式锁实现秒杀

    1. Zookeeper简述 我们要了解一样技术,首先应该要到它的官网,因为官网的信息一般都是最准确的,如下图是Zookeeper官网对它的介绍. 从官网的介绍中,可以总结出,Zookeeper是一个 ...