【BZOJ1951】[SDOI2010]古代猪文

题面

bzoj

洛谷

题解

题目实际上是要求

$ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $

而这个奇怪的模数实际上是个素数,由欧拉定理

$ G^{\sum d|n\;C_n^d}\;mod \; 999911659=G^{\sum d|n\;C_n^d\;mod\;99911658}\;mod \; 999911659 $

主要是解决

$ \sum d|n\;C_n^d\;mod\;999911658 $

注意到

$ 999911658=2×3×4679×35617 $

所以可以对每个质因数枚举约束,用$Lucas$求组合数

最后$CRT$合并即可,注意要特判

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll Mod = 999911658;
ll N, G, fac[50005], ans[10], b[10] = {0, 2, 3, 4679, 35617};
ll fpow(ll x, ll y, ll p) {
ll res = 1;
while (y) {
if (y & 1ll) res = res * x % p;
x = x * x % p;
y >>= 1ll;
}
return res;
}
void init (ll p) { fac[0] = 1; for (ll i = 1; i <= p; i++) fac[i] = i * fac[i - 1] % p; }
ll C(ll n, ll m, ll p) {
if (n < m) return 0;
return fac[n] * fpow(fac[m], p - 2, p) % p * fpow(fac[n - m], p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p) {
if (!m || !n) return 1;
return Lucas(n / p, m / p, p) * C(n % p, m % p, p) % p;
}
ll CRT() {
ll res = 0;
for (int i = 1; i <= 4; i++)
res = (res +
ans[i] * (Mod / b[i]) % Mod *
fpow(Mod / b[i], b[i] - 2, b[i])
% Mod) % Mod;
return res;
}
int main () {
cin >> N >> G;
if (G % (Mod + 1) == 0) return puts("0") & 0;
for (int p = 1; p <= 4; p++) {
init(b[p]);
for (int i = 1; i * i <= N; i++) {
if (N % i == 0) {
ans[p] = (ans[p] + Lucas(N, i, b[p])) % b[p];
if (i * i != N) ans[p] = (ans[p] + Lucas(N, N / i, b[p])) % b[p];
}
}
}
printf("%lld\n", fpow(G, CRT(), Mod + 1));
return 0;
}

【BZOJ1951】[SDOI2010]古代猪文的更多相关文章

  1. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  2. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  3. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  4. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  5. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  6. bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)

    https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...

  7. bzoj1951 [Sdoi2010]古代猪文 ——数论综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...

  8. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  9. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. Codeforces Round #443 (Div. 2) 【A、B、C、D】

    Codeforces Round #443 (Div. 2) codeforces 879 A. Borya's Diagnosis[水题] #include<cstdio> #inclu ...

  2. Java并发案例04---生产者消费者问题03--使用ReentrantLock

    /** * 面试题:写一个固定容量同步容器,拥有put和get方法,以及getCount方法, * 能够支持2个生产者线程以及10个消费者线程的阻塞调用 * * 使用wait和notify/notif ...

  3. Django重定向的写法、与直接渲染的区别

    Django重定向的写法.与直接渲染的区别 return redirect (“login”)     #重定向到login页面,状态码是302页面重定向和直接渲染新的页面的区别.重定向实际是指向了另 ...

  4. ZooKeeper学习之路 (六)ZooKeeper API的简单使用(二)级联删除与创建

    编程思维训练 1.级联查看某节点下所有节点及节点值 2.删除一个节点,不管有有没有任何子节点 3.级联创建任意节点 4.清空子节点 ZKTest.java public class ZKTest { ...

  5. PHP+JQUERY+AJAX上传、裁剪图片(2)

    <script type="text/javascript"> var imgCut = { imgOpt : { imgPrototypeId : 'imgProto ...

  6. pgAdmin4 重置布局

    pgAdmin4 是网页版客户端,而且在其网页上可以通过拖拽改变布局.当布局混乱时可以通过 菜单File--Reset Layout功能来重置. 如果这篇随笔只是为了说以上这句话就没必要了,而且你根据 ...

  7. 404 Note Found队-Alpha2

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组内 ...

  8. 如何使用jquery.qrcode.js插件生成二维码

    1.首先需要准备 jquery.qrcode.js 和 jquery.js github地址:https://github.com/lrsjng/jquery-qrcode 官方文档地址:http:/ ...

  9. Android解析json数据

    Json数据 [{"code":"110000","sheng":"11","di":"0 ...

  10. 实现 在子界面的button按下,在主界面的label显示。

    不知道理解的对不对,反正功能是实现了. 这是子界面,COM口配置界面的 .H文件的定义.下面的Private:定义了Ui:MainWindow  *main_ui;的指针变量      要   注  ...