【BZOJ1951】[SDOI2010]古代猪文

题面

bzoj

洛谷

题解

题目实际上是要求

$ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $

而这个奇怪的模数实际上是个素数,由欧拉定理

$ G^{\sum d|n\;C_n^d}\;mod \; 999911659=G^{\sum d|n\;C_n^d\;mod\;99911658}\;mod \; 999911659 $

主要是解决

$ \sum d|n\;C_n^d\;mod\;999911658 $

注意到

$ 999911658=2×3×4679×35617 $

所以可以对每个质因数枚举约束,用$Lucas$求组合数

最后$CRT$合并即可,注意要特判

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll Mod = 999911658;
ll N, G, fac[50005], ans[10], b[10] = {0, 2, 3, 4679, 35617};
ll fpow(ll x, ll y, ll p) {
ll res = 1;
while (y) {
if (y & 1ll) res = res * x % p;
x = x * x % p;
y >>= 1ll;
}
return res;
}
void init (ll p) { fac[0] = 1; for (ll i = 1; i <= p; i++) fac[i] = i * fac[i - 1] % p; }
ll C(ll n, ll m, ll p) {
if (n < m) return 0;
return fac[n] * fpow(fac[m], p - 2, p) % p * fpow(fac[n - m], p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p) {
if (!m || !n) return 1;
return Lucas(n / p, m / p, p) * C(n % p, m % p, p) % p;
}
ll CRT() {
ll res = 0;
for (int i = 1; i <= 4; i++)
res = (res +
ans[i] * (Mod / b[i]) % Mod *
fpow(Mod / b[i], b[i] - 2, b[i])
% Mod) % Mod;
return res;
}
int main () {
cin >> N >> G;
if (G % (Mod + 1) == 0) return puts("0") & 0;
for (int p = 1; p <= 4; p++) {
init(b[p]);
for (int i = 1; i * i <= N; i++) {
if (N % i == 0) {
ans[p] = (ans[p] + Lucas(N, i, b[p])) % b[p];
if (i * i != N) ans[p] = (ans[p] + Lucas(N, N / i, b[p])) % b[p];
}
}
}
printf("%lld\n", fpow(G, CRT(), Mod + 1));
return 0;
}

【BZOJ1951】[SDOI2010]古代猪文的更多相关文章

  1. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  2. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  3. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  4. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  5. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  6. bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)

    https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...

  7. bzoj1951 [Sdoi2010]古代猪文 ——数论综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...

  8. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  9. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. PostgreSQL 连接问题 FATAL: no pg_hba.conf entry for host

    The server doesn't grant access to the database: the server reports FATAL: no pg_hba.conf entry for ...

  2. redis和mecache和ehcache的特点

    最近项目组有用到这三个缓存,去各自的官方看了下,觉得还真的各有千秋!今天特意归纳下各个缓存的优缺点,仅供参考! Ehcache 在java项目广泛的使用.它是一个开源的.设计于提高在数据从RDBMS中 ...

  3. 四级菜单实现(Python)

    menu_dict = { '山东' : { '青岛' : { '四方':{'兴隆路','平安路','杭州路'}, '黄岛':{}, '崂山':{} }, '济南' : { '历城':{}, '槐荫' ...

  4. 学习python第二天数据库day1

    day01: 关键字:desc 作用:查看表结构(字段名,数据类型&长度) 举例: desc python1808_laoguo; 追加数据到表中:(新增操作) 关键字:insert into ...

  5. 基于HP DL388 Gen 9服务器基本配置(ESXI 6.5)

    最近一段时间由于做毕业设计的原因,一直处于忙碌状态,刚做完毕业设计,导师处于项目的原因,买了一台惠普服务器(人民币1.7万),服务器自带的内存仅有16 G,硬盘也就只有600G,而且磁盘还做了raid ...

  6. virtualbox+vagrant学习-4-Vagrantfile-3-Minimum Vagrant Version

    Minimum Vagrant Version 可以在Vagrantfile中指定一组vagrant版本需求,以强制人们使用带有Vagrantfile文件的vagrant特定版本.这可以帮助解决使用带 ...

  7. Spring(四)之Bean生命周期、BeanPost处理

    一.Bean 生命周期 Spring bean的生命周期很容易理解.当bean被实例化时,可能需要执行一些初始化以使其进入可用状态.类似地,当不再需要bean并从容器中移除bean时,可能需要进行一些 ...

  8. linux下批量重命名文件

    # 使用通配符批量创建 多个文件:$ touch zqunor{1..7}.txt # 批量将多个后缀为 .txt 的文本文件重命名为以 .c 为后缀的文件:$ rename 's/\.txt/\.c ...

  9. Reading Meticulous Measurement of Control Packets in SDN

    SOSR 17 概要 网络流量中有一部分是用于网络管理,(根据packet process survey,该部分流量属于包转发的slow path部分)由于sdn的数控分离,交换机需要向控制器发送大量 ...

  10. git相关命令

    查看分支:git branch创建分支:git branch <name>切换分支:git checkout <name>创建+切换分支:git checkout -b < ...