CF1100E
i207M给的题
给定一张有向图,每条边有边权。你可以花费边权的代价反转一条边,使得原图中没有环。最小化反转的边权的最大值。
首先二分,然后考虑判定。
转化为有些边可以翻转,有些边不可以翻转,使得图中没有环
我们把不能反向的边拿出来,然后跑拓扑排序判环,如果有环则无解,不然一定有一种方案,加入那些可以改变方向的边而不产生环。
新加的边方向:拓扑序小的连向拓扑序大的
有环一定是大的拓扑序连向小的拓扑序有一条边
而这样是一定没有环的!
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=+;
int n,m;
struct edge{
int x,y,z;
}b[N];
struct node{
int nxt,to;
}e[*N];
int hd[N],cnt;
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
int dfn[N],df;
int q[N],l,r;
int du[N];
int mem[N],tot;
bool topo(){
memset(dfn,,sizeof dfn);
l=,r=;
df=;
for(reg i=;i<=n;++i){
if(du[i]==){
q[++r]=i;
dfn[i]=++df;
}
}
while(l<=r){
int x=q[l++];
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
du[y]--;
if(!du[y]){
dfn[y]=++df;
q[++r]=y;
}
}
}
for(reg i=;i<=n;++i){
if(!dfn[i]) return false;
}
return true;
}
bool che(int mid){
memset(du,,sizeof du);
memset(hd,,sizeof hd);
cnt=;
for(reg i=;i<=m;++i){
if(b[i].z>mid){
add(b[i].x,b[i].y);
++du[b[i].y];
}
}
return topo();
}
int main(){
rd(n);rd(m);
int x,y,z;
int L=,R=;
for(reg i=;i<=m;++i){
rd(x);rd(y);rd(z);R=max(R,z);
b[i].x=x;b[i].y=y;b[i].z=z;
}
int ans=;
while(L<=R){
int mid=(L+R)>>;
if(che(mid)){
ans=mid;R=mid-;
}else L=mid+;
}
printf("%d ",ans);
bool haha=che(ans);
for(reg i=;i<=m;++i){
if(dfn[b[i].x]>dfn[b[i].y]){
mem[++tot]=i;
}
}
sort(mem+,mem+tot+);
printf("%d\n",tot);
for(reg i=;i<=tot;++i){
printf("%d ",mem[i]);
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/1/16 11:46:04
*/
CF1100E的更多相关文章
- CF1100E Andrew and Taxi
题目地址:CF1100E Andrew and Taxi 二分,每次取到一个 \(mid\) ,只保留长度 \(>mid\) 的边 dfs判环,若有环,说明 \(ans>mid\) ,否则 ...
- CF1100E Andrew and Taxi 二分答案+拓扑排序
\(\color{#0066ff}{ 题目描述 }\) 给定一个有向图,改变其中某些边的方向,它将成为一个有向无环图. 现在求一个改变边方向的方案,使得所选边边权的最大值最小. \(\color{#0 ...
- CF-1100 E Andrew and Taxi
CF-1100E Andrew and Taxi https://codeforces.com/contest/1100/problem/E 知识点: 二分 判断图中是否有环 题意: 一个有向图,每边 ...
随机推荐
- 跟浩哥学自动化测试Selenium -- Selenium简介 (1)
Selenium 简介 Selenium 是一款开源的web自动化测试工具,用来模拟对浏览器的操作(主要是对页面元素的操作),简单来讲,其实就是一个jar包.Selenium早期的版本比如1.0市场占 ...
- realstudio 粒子特效问题总结
ParticleEmitter._inner_material.flags.depth_write = true;ParticleEmitter._inner_material.flags.depth ...
- 《Cocos2d-x游戏开发实战精解》学习笔记3--在Cocos2d-x中播放声音
<Cocos2d-x游戏开发实战精解>学习笔记1--在Cocos2d中显示图像 <Cocos2d-x游戏开发实战精解>学习笔记2--在Cocos2d-x中显示一行文字 之前的内 ...
- pyextend库-merge可迭代对象合并函数
pyextend - python extend lib merge (iterable1, *args) 参数: iterable1: 实现 __iter__的可迭代对象, 如 str, tupl ...
- $_SERVER的详细参数整理下
PHP编程中经常需要用到一些服务器的一些资料,特把$_SERVER的详细参数整理下,方便以后使用. $_SERVER['PHP_SELF'] #当前正在执行 脚本的文件名,与 document roo ...
- Kotlin 学习笔记(一)
(Kotlin 学习笔记的文档结构基本按照 Java 核心技术一书的目录排列) 基本程序设计结构 数据类型 数字 类型 宽度 Double 64 Float 32 Long 64 Int 32 Sho ...
- SDN练习一
SDN练习第一题 题目描述 实现网络拓扑: 具体要求: 南向接口采用OpenFlow 协议. 可查看网络的拓扑信息视图. H1.H2.H3.H4 任意两两可互通. 实现思路 利用mininet可视化图 ...
- DP---基本思想 具体实现 经典题目 POJ1160 POJ1037
POJ1160, post office.动态规划的经典题目.呃,又是经典题目,DP部分的经典题目怎就这么多.木有办法,事实就这样. 求:在村庄内建邮局,要使村庄到邮局的距离和最小. 设有m个村庄,分 ...
- 第5题 查找字符串中的最长回文字符串---Manacher算法
转载:https://www.felix021.com/blog/read.php?2040 首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一 ...
- 浅析GCC下C++多重继承 & 虚拟继承的对象内存布局
继承是C++作为OOD程序设计语言的三大特征(封装,继承,多态)之一,单一非多态继承是比较好理解的,本文主要讲解GCC环境下的多重继承和虚拟继承的对象内存布局. 一.多重继承 先看几个类的定义: 01 ...