【BZOJ1951】古代猪文(CRT,卢卡斯定理)

题面

BZOJ

洛谷

题解

要求什么很显然吧。。。

\[Ans=G^{\sum_{k|N}{C_N^k}}
\]

给定的模数是一个质数,要求解的东西相当于是上面那坨东西的结果对于\(\varphi\)的取值。

但是\(\varphi\)不是质数,不好直接\(Lucas\)定理,把\(\varphi\)分解质因数之后,

直接\(CRT\)合并结果就好了,所以这个就是\(ex\_Lucas\)

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define RG register
#define MAX 50000
#define MOD (999911659)
#define phi (999911658)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b,int P)
{
int s=1;if(!a)return 0;
while(b){if(b&1)s=1ll*s*a%P;a=1ll*a*a%P;b>>=1;}
return s;
}
int pri[5]={0,2,3,4679,35617},tot=4;
int jc[5][MAX],jv[5][MAX],N,G,ans;
void pre(int P)
{
jc[P][0]=1;
for(int i=1;i<=pri[P];++i)jc[P][i]=1ll*jc[P][i-1]*i%pri[P];
jv[P][pri[P]-1]=fpow(jc[P][pri[P]-1],pri[P]-2,pri[P]);
for(int i=pri[P]-2;~i;--i)jv[P][i]=1ll*jv[P][i+1]*(i+1)%pri[P];
}
int C(int n,int m,int P){return 1ll*jc[P][n]*jv[P][m]%pri[P]*jv[P][n-m]%pri[P];}
int Lucas(int n,int m,int P)
{
if(m>n)return 0;if(!m)return 1;
if(n<pri[P]&&m<pri[P])return C(n,m,P);
return 1ll*Lucas(n/pri[P],m/pri[P],P)*Lucas(n%pri[P],m%pri[P],P)%pri[P];
}
int exgcd(int a,int b,int &x,int &y)
{
if(!b){x=1;y=0;return a;}
int d=exgcd(b,a%b,y,x);
y-=a/b*x;return d;
}
int CRT(int k)
{
int x,y,a,ret=0;
for(int i=1;i<=4;++i)
{
a=Lucas(N,k,i);
exgcd(phi/pri[i],pri[i],x,y);
x=(x%pri[i]+pri[i])%pri[i];
ret=(ret+1ll*a*x%phi*(phi/pri[i])%phi)%phi;
}
return (ret+phi)%phi;
}
int main()
{
pre(1);pre(2);pre(3);pre(4);
N=read();G=read()%MOD;
for(int i=1;i*i<=N;++i)
if(N%i==0)
{
ans=(ans+CRT(i))%phi;
if(i*i!=N)ans=(ans+CRT(N/i))%phi;
}
ans=fpow(G,ans,MOD);printf("%d\n",ans);
return 0;
}

【BZOJ1951】古代猪文(CRT,卢卡斯定理)的更多相关文章

  1. [Sdoi2010]古代猪文 (卢卡斯定理,欧拉函数)

    哇,这道题真的好好,让我这个菜鸡充分体会到卢卡斯和欧拉函数的强大! 先把题意抽象出来!就是计算这个东西. p=999911659是素数,p-1=2*3*4679*35617 所以:这样只要求出然后再快 ...

  2. 洛谷P2480 [SDOI2010]古代猪文(卢卡斯定理+中国剩余定理)

    传送门 好吧我数学差的好像不是一点半点…… 题目求的是$G^{\sum_{d|n}C^d_n}mod\ 999911659$ 我们可以利用费马小定理$a^{k}\equiv a^{k\ mod\ (p ...

  3. BZOJ1951 古代猪文 【数论全家桶】

    BZOJ1951 古代猪文 题目链接: 题意: 计算\(g^{\sum_{k|n}(^n_k)}\%999911659\) \(n\le 10^9, g\le 10^9\) 题解: 首先,根据扩展欧拉 ...

  4. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  5. 【bzoj1951】【古代猪文】Lucas定理+欧拉定理+孙子定理

    (上不了p站我要死了,当然是游戏原画啊) Description (题面倒是很有趣,就是太长了) 题意: 一个朝代流传的猪文文字恰好为N的k分之一,其中k是N的一个正约数(可以是1和N).不过具体是哪 ...

  6. 古代猪文:数论大集合:欧拉定理,exgcd,china,逆元,Lucas定理应用

    /* 古代猪文:Lucas定理+中国剩余定理 999911658=2*3*4679*35617 Lucas定理:(m,n)=(sp,tp)(r,q) %p 中国剩余定理:x=sum{si*Mi*ti} ...

  7. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  8. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

  9. 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理

    P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...

随机推荐

  1. 【linux报错】-bash: xhost: command not found

    参考自:http://blog.csdn.net/csdnones/article/details/51513163,感谢原作者解决了我的问题. 执行xhost +,报以下错误,原因是因未没有安装相关 ...

  2. C#与mongoDB初始环境搭建

    mongoDB官网https://www.mongodb.com/ mongoDB默认安装路径(Windows x64平台) C:\Program Files\MongoDB\Server\3.4\b ...

  3. 文件批量加密重命名--python脚本AND mysql命令行导入数据库

    在考试中学生交上来的报告,需要进行一下文件名加密,这样阅卷老师就不知道是谁的报告了 在百度帮助下,完成了加密和解密脚本, 加密 #!/usr/bin/python # -*- coding: utf- ...

  4. vue cli 3 +jquery

    const webpack = require('webpack')module.exports = { // baseUrl type:{string} default:'/' // 将部署应用程序 ...

  5. flex布局与ellipsis冲突问题

    在flex布局里使用text-overflow: ellipsis;发现没有省略. 解决方案 .g-flex-c{ flex: 1; min-width: 0; }

  6. 排序(C语言实现)

    读数据结构与算法分析 插入排序 核心:利用的是从位置0到位置P都是已排序的 所以从位置1开始排序,如果当前位置不对,则和前面元素反复交换重新排序 实现 void InsertionSort(Eleme ...

  7. Windows操作系统C盘占用空间过多

    Windows操作系统C盘占用空间过多 大部分的windows电脑用户在长时间使用PC时都会遇到一个问题,就是C盘占用的空间会越来越多,乃至占满整个C盘. 后来在百度了一波,发现各种方法都试过了,也不 ...

  8. C语言—单链表

    单链表操作:读取,插入和删除 #include "stdafx.h" #include <string.h> #include <stdio.h> #inc ...

  9. Python操作摄像头

    实践环境: 操作系统:Windows 7(X64) Python版本:python-2.7.13.msi 使用插件:pygame-1.9.1.win32-py2.7.msi 软件下载: python- ...

  10. Right-BICEP测试四则运算2

    根据Right-BICEP单元测试的方法,我对我写的四则运算2的程序进行了测试: 1.测试能否控制使用乘除 有乘除 无乘除 2.测试是否能加括号 不加括号 加括号 3.能否控制结果没有负数 无负数 4 ...