link

题目大意

有$n$个点的前边权为$0$的树,你要加入$S$边权总量,可以为分数,使得当前树的直径最小。

题目分析

题目过于毒瘤,导致于最后$1$个小时一直在做此题,没想到真的只是一个结论一样的东西。

我们不要想十分复杂,我们发现数的直径两端都会在度数为$1$的点上,就是叶子节点。然后呢我们就可以把此题转换成让两两叶子节点直接距离相等且最短时是多少。

就比如当此时我们便让$(1,3),(1,4),(1,6),(3,6),(3,4),(4,6)$距离都是一样的,答案是$0.5$。

所以现在我们要做的是将树的直径平分,这是一个定值,也就是答案,我们发现怎么去构造呢,易看图发现有些边权值为$0$$(2,5)$,这样会使每两个叶子节点只会走两个权值不为$0$的,也就是两个叶子节点挨着边。

所以我们可以发现答案为$\frac{(n-1)\times k}{C_{ans}^2}$,其中$ans$为叶子节点个数,$k$为一共需要加到$k$这个权值,而$n-1$是因为每条叶子节点挨着的边都遍历过$n-1$遍,整理的答案为$\frac{2\times k}{ans}$

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
int n,k,du[MAXN],ans;
int main(){
n=read(),k=read();
for(int i=;i<n;i++)du[read()]++,du[read()]++;
for(int i=;i<=n;i++)
if(du[i]==) ans++;
printf("%.10lf",*1.0*k/ans);
}

[CF1087D]Minimum Diameter Tree的更多相关文章

  1. D. Minimum Diameter Tree 思维+猜结论

    D. Minimum Diameter Tree 思维+猜结论 题意 给出一颗树 和一个值v 把该值任意分配到任意边上 使得\(\sum\limits_{i,j}p_{ij}=v\) 使得 这颗树任意 ...

  2. D. Minimum Diameter Tree Round #528 (Div. 2)【树】

    一.题面 题目链接 二.分析 该题注意读题的时候有强调边的权值为非负(即可以为0),此题就是求树两个叶子节点之间的最短距离.为了使两个叶子节点之间的距离最短,那么其实就是让每个最后到叶子的那条路径尽量 ...

  3. 【Codeforces 1086B】Minimum Diameter Tree

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 统计叶子节点个数m 把每条和叶子节点相邻的边权设置成s/cnt就可以了 这样答案就是2*s/m(直径最后肯定是从一个叶子节点开始,到另外一个叶 ...

  4. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  5. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  6. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  7. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

随机推荐

  1. Linux工作管理

    工作管理? 其实也就是把程序放到后台来管理,在windows中也就是最小化,在Linux中是通过命令把程序放到后台中.jobs命令查看后台程序. 对于第一点注意事项,mysql启动是例外的,要是叉掉了 ...

  2. 谈谈你对Java异常处理机制的理解

    先谈谈我的理解:异常处理机制可以说是让我们编写的程序运行起来更加的健壮,无论是在程序调试.运行期间发生的异常情况的捕获,都提供的有效的补救动作,任何业务逻辑都会存在异常情况,这时只需要记录这些异常情况 ...

  3. NO--09今天遇到的一点小问题之axios全局注册

    今天用 Vue 写项目的时候,用到 axios ,因为 axios 不能用 Vue.use() ,所以在每个 .vue 文件中使用 axios 时就需要 import , .vue 文件少的话还好说, ...

  4. mysql group by 取第一条

    select * from table where id in (select max(id) from table group by sku) 说明:id是自增序列,sku是表中的一个字段

  5. eclipse版本信息及操作系统

    一.查看版本信息: 进入到eclipse安装目录下,有一个.eclipseproduct文件,用记事本打开,就可以知道版本了,后面version=的值就是版本 二.是否为32位操作系统: 找到ecli ...

  6. java 乐观锁 vs 悲观锁

    在数据库的锁机制中介绍过,数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性. 悲观锁其实就是 完全同步 比如 sync ...

  7. 如何理解IPD+CMMI+Scrum一体化研发管理解决方案之Scrum篇

    如何快速响应市场的变化,如何推出更有竞争力的产品,如何在竞争中脱颖而出,是国内研发企业普遍面临的核心问题,为了解决这些问题,越来越多的企业开始重视创新与研发管理,加强研发过程的规范化,集成产品开发(I ...

  8. 希尔排序(java实现)

    上篇blog中介绍的直接插入排序,希尔排序就是对直接插入排序的一个优化.比如有这么一种情况:对一个无序数组进行从小到大的排序,但是数组的最后一个位置的数是最小的,我们要把它挪到第一个位置,其他位置的都 ...

  9. java 队列的使用(转载)

    转载声明:http://blog.csdn.net/lzy_lizhiyang/article/details/48311925 先我们要知道使用队列的目的是什么?一般情况下,如果是一些及时消息的处理 ...

  10. nginx 配置文件简介

    主配置文件说明(先将注释部分去掉:sed -ri ‘/^#|[[:space:]]+#/d’ /etc/nginx/nginx.conf) (1)全局配置段 1:指明运行worker进程的用户和组 u ...