poj 2096 Collecting Bugs 概率dp 入门经典 难度:1
Time Limit: 10000MS | Memory Limit: 64000K | |
Total Submissions: 2745 | Accepted: 1345 | |
Case Time Limit: 2000MS | Special Judge |
Description
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category.
Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It's important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan's opinion about the reliability of the obsolete version.
A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem.
Find an average time (in days of Ivan's work) required to name the program disgusting.
Input
Output
Sample Input
1 2
Sample Output
3.0000 感想:一开始列出公式不知道干什么,但是实际上,从n,s的状态向0,0状态逆着递推,当n,s状态时,一步也不需要移动,否则因为后面的状态已经不会影响到前面的状态,直接转移,感觉这个实在是概率dp;当时遇到的打开新思路的一道题
思路:dp[i][j]代表已经得到i种bug,j个子项目有bug,达成目标所需的最少次数,那么dp[n][s]明显为0,其余的某种状态dp[i][j],只可能最多向四种情况转移,也就是dp[i][j],概率为i*j/n/s,dp[i][j+1]概率为i*(s-j)/n/s,dp[i+1][j]概率为(n-i)*j/n/s,dp[i+1][j+1],概率为(n-i)*(s-j)/n/s,现在其它三种状态((i+1,j),(i,j+1),(i+1,j+1))都得到了,于是dp[i][j]就是唯一的未知量,可以解出来
dp[i][j]=1+dp[i+1][j]*j*(n-i)/n/s+dp[i][j+1]*i*(s-j)/n/s+dp[i+1][j+1]*(s-j)*(n-i)/n/s+dp[i][j]*i*j/n/s;
#include <cstdio>
#include <cstring>
using namespace std;
int n,s;
double dp[1001][1001];
int main(){
while(scanf("%d%d",&n,&s)==2){
memset(dp,0,sizeof(dp));
for(int i=n;i>=0;i--){
for(int j=s;j>=0;j--){
if(i==n&&j==s)continue;
dp[i][j]=1+dp[i+1][j]*j*(n-i)/n/s+dp[i][j+1]*i*(s-j)/n/s+dp[i+1][j+1]*(s-j)*(n-i)/n/s;
double p=1-(double)i*j/n/s;
dp[i][j]/=p;
}
}
printf("%.4f\n",dp[0][0]);
}
}
poj 2096 Collecting Bugs 概率dp 入门经典 难度:1的更多相关文章
- POJ 2096 Collecting Bugs (概率DP,求期望)
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- poj 2096 Collecting Bugs (概率dp 天数期望)
题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...
- Poj 2096 Collecting Bugs (概率DP求期望)
C - Collecting Bugs Time Limit:10000MS Memory Limit:64000KB 64bit IO Format:%I64d & %I64 ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2096 Collecting Bugs 期望dp
题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...
- poj 2096 Collecting Bugs - 概率与期望 - 动态规划
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3523 Accepted: 1740 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- Collecting Bugs (概率dp)
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
随机推荐
- Python开发【Django】:基础
Django基本配置 Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Se ...
- django-models的get与filter
为了说明它们两者的区别定义2个models class Student(models.Model):name = models.CharField('姓名', max_length=20, defau ...
- ovn-sb 摘要
1.Database Structure Physical network table中包含了和chassis nodes有关的所有信息,包括用于overlay所需的IP地址,支持的tunnel类型以 ...
- mysql 数据操作 单表查询 group by 聚合函数 没有group by情况下
聚合函数只能用在组里使用 #没有group by 则默认算作一组 取出所有员工的最高工资 mysql> select max(salary) from employee; +---------- ...
- android 本地通知
NotificationManager manager = (NotificationManager)getSystemService(NOTIFICATION_SERVICE); Notificat ...
- python之轮询、长轮询、websocket
轮询 ajax轮询 ,ajax轮询 的原理非常简单,让浏览器隔个几秒就发送一次请求,询问服务器是否有新信息. 1.后端代码 from flask import Flask,render_templat ...
- Mac OS X 在 Finder 里快速创建文本文件
Automator 新建一个 Application 选取:应用程序 实用工具→运行AppleScript 添加一个动作 "Run AppleScript"代码如下: on r ...
- 【Lua】LDoc生成Lua文档工具的使用
参考资料: http://my.oschina.net/wangxuanyihaha/blog/188909 LDoc介绍: LDoc是一个Lua的文档生成工具,过去,比较常用的Lua生成 ...
- SpringData修改和删除操作
SpringData的查询我们已经学完了,我们现在就研究一下SpringData的修改和删除. @Modifying 注解和事务 @Query 与 @Modifying 这两个 annotation一 ...
- VS2010/MFC编程入门之八(对话框:创建对话框类和添加控件变量)
前两讲中鸡啄米为大家讲解了如何创建对话框资源.创建好对话框资源后要做的就是生成对话框类了.鸡啄米再声明下,生成对话框类主要包括新建对话框类.添加控件变量和控件的消息处理函数等. 因为鸡啄米给大家的例程 ...