poj 2096 Collecting Bugs 概率dp 入门经典 难度:1
| Time Limit: 10000MS | Memory Limit: 64000K | |
| Total Submissions: 2745 | Accepted: 1345 | |
| Case Time Limit: 2000MS | Special Judge |
Description
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category.
Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It's important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan's opinion about the reliability of the obsolete version.
A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem.
Find an average time (in days of Ivan's work) required to name the program disgusting.
Input
Output
Sample Input
1 2
Sample Output
3.0000 感想:一开始列出公式不知道干什么,但是实际上,从n,s的状态向0,0状态逆着递推,当n,s状态时,一步也不需要移动,否则因为后面的状态已经不会影响到前面的状态,直接转移,感觉这个实在是概率dp;当时遇到的打开新思路的一道题
思路:dp[i][j]代表已经得到i种bug,j个子项目有bug,达成目标所需的最少次数,那么dp[n][s]明显为0,其余的某种状态dp[i][j],只可能最多向四种情况转移,也就是dp[i][j],概率为i*j/n/s,dp[i][j+1]概率为i*(s-j)/n/s,dp[i+1][j]概率为(n-i)*j/n/s,dp[i+1][j+1],概率为(n-i)*(s-j)/n/s,现在其它三种状态((i+1,j),(i,j+1),(i+1,j+1))都得到了,于是dp[i][j]就是唯一的未知量,可以解出来
dp[i][j]=1+dp[i+1][j]*j*(n-i)/n/s+dp[i][j+1]*i*(s-j)/n/s+dp[i+1][j+1]*(s-j)*(n-i)/n/s+dp[i][j]*i*j/n/s;
#include <cstdio>
#include <cstring>
using namespace std;
int n,s;
double dp[1001][1001];
int main(){
while(scanf("%d%d",&n,&s)==2){
memset(dp,0,sizeof(dp));
for(int i=n;i>=0;i--){
for(int j=s;j>=0;j--){
if(i==n&&j==s)continue;
dp[i][j]=1+dp[i+1][j]*j*(n-i)/n/s+dp[i][j+1]*i*(s-j)/n/s+dp[i+1][j+1]*(s-j)*(n-i)/n/s;
double p=1-(double)i*j/n/s;
dp[i][j]/=p;
}
}
printf("%.4f\n",dp[0][0]);
}
}
poj 2096 Collecting Bugs 概率dp 入门经典 难度:1的更多相关文章
- POJ 2096 Collecting Bugs (概率DP,求期望)
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- poj 2096 Collecting Bugs (概率dp 天数期望)
题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...
- Poj 2096 Collecting Bugs (概率DP求期望)
C - Collecting Bugs Time Limit:10000MS Memory Limit:64000KB 64bit IO Format:%I64d & %I64 ...
- POJ 2096 Collecting Bugs (概率DP)
题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...
- POJ 2096 Collecting Bugs 期望dp
题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...
- poj 2096 Collecting Bugs - 概率与期望 - 动态规划
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3523 Accepted: 1740 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- Collecting Bugs (概率dp)
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
随机推荐
- Python开发【笔记】:接口
接口 什么是接口 ? 接口只是定义了一些方法,而没有去实现,多用于程序设计时,只是设计需要有什么样的功能,但是并没有实现任何功能,这些功能需要被另一个类(B)继承后,由 类B去实现其中的某个功能或全部 ...
- Python isdigit() isalnum()
Python isdigit() 方法检测字符串是否只由数字组成. 返回值 如果字符串只包含数字则返回 True 否则返回 False. >>> choice = input(&qu ...
- (转)在GitHub多个帐号上添加SSH公钥
GitHub后台可以添加多个SSH Keys,但是同一个SSH Keys只能在添加在一个帐号上(添加时提示“Key is already in use”).理由很容易想到,SSH公钥使用时相当于用户名 ...
- Linux系统——Inotify事件监控工具
每秒传输文件200个 Rsync放在定时任务中也只是一分钟执行一回,要想达到实时的效果,为防止单点nfs架构故障,再启动一台nfs服务器作为主nfs服务器的备份服务器,此时需要inotify实时同步数 ...
- net.tcp协议的wcf服务在远程计算机无法调用问题分析
可能原因1:net.tcp监听端口服务没有启动. 可能原因2:防火墙阻止了端口服务器路径访问. 可能原因3:配置文件路径endpoint路径和引用路径不一致 可能原因4:权限受限制.
- dns之缓存。
1.浏览器缓存.这里以chrome为例.在chrome上输入:chrome://net-internals/#dns 可以查看chrome浏览器的dns缓存信息. 这样. 2.windows系统缓存. ...
- 使用RequireJS并实现一个自己的模块加载器 (二)
2017 新年好 ! 新年第一天对我来说真是悲伤 ,早上兴冲冲地爬起来背着书包跑去实验室,结果今天大家都休息 .回宿舍的时候发现书包湿了,原来盒子装的牛奶盖子松了,泼了一书包,电脑风扇口和USB口都进 ...
- ng-深度学习-课程笔记-10: 机器学习策略2(Week2)
1 误差分析( Carrying out error analysis ) 假设你训练了一个猫的二分类模型,在开发集上的错误率是10%,你想分析这10%的错误率来自哪里,怎么做呢? 先把这些错分的图片 ...
- SQL: 拼接列
1. 因工作需要,需把两列(id,created_by)拼接成一列,结果很有意思,前5个值都是null. 2.解决方法:null加减乘除任何值都等于null,所以使用isnull函数先处理下列的值再拼 ...
- c++第二十八天
p140~p144:逗号运算符1.特点:1)规定运算顺序,即由左向右.2)逗号运算符的真正结果是右侧表达式的值! 练习 4.31 使用后置的运算符会有额外的内存开销, 在这道题中使用前置和后置结果貌似 ...