POJ2728 Desert King 最优比率生成树
题目 http://poj.org/problem?id=2728
关键词:0/1分数规划,参数搜索,二分法,dinkelbach
参考资料:http://hi.baidu.com/zzningxp/item/28aa46e0fd86bdc2bbf37d03
http://hi.baidu.com/zheng6822/item/b31fbe9d5ae17536336eeb8f
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
#include<math.h>
#define N 1010
#define INF 1e15
#define eps 1e-10
using namespace std;
double X[N],Y[N],Z[N];
double cost[N][N];
double lowcost[N];
int closest[N];int vis[N];
int n;double r;
double disc(int i,int j)
{
return fabs(Z[i]-Z[j]);
}
double disd(int i,int j)
{
return sqrt((X[i]-X[j])*(X[i]-X[j])+(Y[i]-Y[j])*(Y[i]-Y[j]));
}
double prim(double r)
{
double sumc=;double sumd=;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
if(i==j)
cost[i][j]=INF;
else
cost[i][j]=disc(i,j)-r*disd(i,j);
}
for(int i=;i<n;i++)
{
lowcost[i]=cost[][i];
vis[i]=;
closest[i]=;
}
closest[]=;
vis[]=;
int k;
for(int i=;i<n;i++)
{
double tmp=INF;
for(int j=;j<n;j++)
if(!vis[j]&&tmp>lowcost[j])
{
k=j;
tmp=lowcost[j];
}
vis[k]=;
for(int j=;j<n;j++)
if(!vis[j]&&lowcost[j]>cost[k][j])
{
lowcost[j]=cost[k][j];
closest[j]=k;
}
}
for(int i=;i<n;i++)
{
sumc+=disc(i,closest[i]);
sumd+=disd(i,closest[i]);
}
return sumc/sumd;
}
int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=;i<n;i++)
cin>>X[i]>>Y[i]>>Z[i];
double r1=,r2=;
while()
{
r2=prim(r1);
if(fabs(r1-r2)<=eps)
break;
r1=r2;
}
printf("%.3f\n",r1);
}
return ;
}
PRIM+迭代法
主要算法部分的分析
double prim(double r)
{
/*根据题目要求和算法得到由新的权值组成的图,并且写出邻接矩阵*/
double sumc=0;double sumd=0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(i==j)
cost[i][j]=INF;
else
cost[i][j]=disc(i,j)-r*disd(i,j);
}
/*初始化*/
for(int i=0;i<n;i++)
{
lowcost[i]=cost[0][i];
vis[i]=0; /*判断该点是否已经在集合内*/
closest[i]=0; /*邻接点*/
}
/*将第一个点加入集合*/
closest[0]=0;
vis[0]=1;
int k;
for(int i=0;i<n;i++)
{
double tmp=INF;
/*通过一次循环找到与第一个点距离最短的点*/
for(int j=0;j<n;j++)
if(!vis[j]&&lowcosat[j]<tmp)
{
k=j;
tmp=lowcost[j];
}
/*将该点加入集合中*/
vis[k]=1;
/*这一步是更新其他的点到集合中的点的距离,closest是用来记录该点的前驱的点的数组,lowcost是用来记录其他点到MST的最短距离的数组,注意是到树上任意一点而不是其中某点*/
for(int j=0;j<n;j++)
if(!vis[j]&&lowcost[j]>cost[j][k])
{
lowcost[j]=cost[j][k];
closest[j]=k;
}
}
/*返回参数,用于迭代*/
for(int i=0;i<n;i++)
{
sumc+=disc(i,closest[i]);
sumd+=disd(i,closest[i]);
}
return sumc/sumd;
}
POJ2728 Desert King 最优比率生成树的更多相关文章
- POJ2728 Desert King —— 最优比率生成树 二分法
题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS Memory Limit: 65536K Total Subm ...
- POJ 2728 Desert King 最优比率生成树
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20978 Accepted: 5898 [Des ...
- 【POJ2728】Desert King 最优比率生成树
题目大意:给定一个 N 个点的无向完全图,边有两个不同性质的边权,求该无向图的一棵最优比例生成树,使得性质为 A 的边权和比性质为 B 的边权和最小. 题解:要求的答案可以看成是 0-1 分数规划问题 ...
- Desert King(最优比率生成树)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 22717 Accepted: 6374 Desc ...
- POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)
题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...
- POJ 2728 Desert King(最优比率生成树, 01分数规划)
题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...
- POJ 2728 Desert King (最优比率树)
题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...
- poj-2728Desert King(最优比率生成树)
David the Great has just become the king of a desert country. To win the respect of his people, he d ...
- POJ 2728 Desert King (最优比例生成树)
POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...
随机推荐
- 前端基础(JavaScript)
JavaScript概述 JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEase.( ...
- ruby中的回调方法和钩子方法
在ruby中,当某些特定的事件发生时,将调用回调方法和钩子方法.事件有如下几种: 调用一个不存在的对象方法 类混含一个模块 定义类的子类 给类添加一个实例方法 给对象添加一个单例方法 引用一个不存在的 ...
- 史上最强网推案例,没有之一【ZW团队实战经典】
ZW团队认为,互联网本质只有两个字:颠覆. ZW网络推广团队,是国内首个教父级网络营销团队,自1997年以来,先后参与操盘多个重大互联网项目,服务过超过150家国际500强客户,是微软公司首家官方认证 ...
- Http请求中Content-Type
1. Content-Type MediaType,即是Internet Media Type,互联网媒体类型:也叫做MIME类型,在Http协议消息头中,使用Content-Type来表示具体请求 ...
- Gulp和Webpack对比
在现在的前端开发中,前后端分离.模块化开发.版本控制.文件合并与压缩.mock数据等等一些原本后端的思想开始逐渐渗透到“大前端”的开发中.前端开发过程越来越繁琐,当今越来越多的网站已经从网页模式进化到 ...
- 图像处理(二十一)基于数据驱动的人脸卡通动画生成-Siggraph Asia 2014
http://blog.csdn.net/garfielder007/article/details/50582018 在现实生活中,我们经常会去评价一个人,长得是否漂亮.是不是帅哥美女,然而如何用五 ...
- js 打印软件 Lodop
官网首页:http://www.c-lodop.com/index.html 下载页面里有使用手册可下载.
- Git简介【转】
本文转载自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 Git简介 Git是什 ...
- 连接数据库的DBUtils工具类
import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedStatement; import ...
- linux文件锁的应用,POSIX,unix标准,linux标准
1. perl,flock加锁.java也能加锁. 2. 先创建文件并打开,才能加锁(写打开?). 3. 可以用于判断进程是否一直在运行(用另一进程判断),如果锁一直在,则进程在:锁不在,则原进程或意 ...