SICP CONCLUSION

让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 !

祝我能够突破层层代码,找到住在里计算机的神灵!

目录

1. 构造过程抽象
2. 构造数据抽象
3. 模块化、对象和状态
4. 元语言抽象
5. 寄存器机器里的计算

Chapter 1

  • 构造过程对象

练习答案

过程与它们所产生的计算

能够看清楚所考虑的动作的后果的能力,对程序设计专家是至关重要的

  • Shape

    • 线性的递归和迭代

    线性递归过程构造起一个推迟进行的链条,操作也需要维护好将要执行的操作轨迹,深度也是线性增长的

    迭代计算过程,那些可以用固定数目的状态变量描述的计算过程,并且存在一套固定的规则描述了计算过程从一个状态倒下一状态的转换

    • 树形递归

    例子:斐波那契数

    `fib(n) = fib(n-1) + fib(n-2)``

    改进方法:依据描述的迭代计算过程,很容易就可以找到斐波那契数里固定数目的状态变量和变换规则

    (define (fib n)
    (fib-iter 1 0 n)) (define (fib-iter a b count)
    (if (= count 0)
    b
    (fib-iter b a+b (- count 1))))
  • 实例:换零钱的方式

递归思考:分解成小问题(完备)->降低问题规模->到最小的退化情况

所有换零钱的方式 = 换成除了第一种硬币之外的其他硬币的不同方式数 + 用了第一种硬币后

(define (count-change amount)
(cc amount 5)) (define (cc amount kinds-of-coins)
(cond ((= amount 0) 1)
((or (< amount 0) (= kinds-of-coins 0)) 0)
(else (+ (cc amount
(- kinds-of-coins 1))
(cc (- amount
(first-denomination kinds-of-coins))
kinds-of-coins))))) (define (first-denomination kinds-of-coins)
(cond ((= kinds-of-coins 1) 1)
((= kinds-of-coins 2) 5)
((= kinds-of-coins 3) 10)
((= kinds-of-coins 4) 25)
((= kinds-of-coins 5) 50)))
  • 增长的阶

描述在消耗计算资源的速率的差异

令n一个能作为问题规模的一种度量,令R(N)是一个计算过程在处理规模为N的问题时所需要的资源量

之前求平方根的R(N)就具有f(n)的theta

  • 求幂

作者一步步的演示计算过程背后的东西,例如优化它

  1. 递归定义:线性递归,需要Θ(n)的空间和Θ(n)的时间
(define (expt b n)
(if (= n 0)
1
(* b (expt b (- n 1)))))
  1. 迭代定义:还是根据之前迭代的描述,找出固定的状态变量和一套规则改写它.只要Θ(1)的空间
(define (expt b n)
(expt-iter b n 1)) (define (expt-iter b counter product)
(if (= counter 0)
product
(expt-iter b
(- counter 1)
(* b product))))
  1. 之后的优化算法:连续平方
(define (fast-expt b n)
(cond ((= n 0) 1)
((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1)))))) (define (even? n)
(= (remainder n 2) 0))
  • 最大公约数

欧几里得算法:如果r是a除以b的余数,那么a和b的公约数正好是b和r的公约数

(define (gcd a b)
(if (= b 0)
a
(gcd b (remainder a b))))
  • 实例:素数检测

  1. 寻找因子(增长为Θ(根号2))
(define (smallest-divisor n)
(find-divisor n 2)) (define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1))))) (define (divides? a b)
(= (remainder b a) 0)) (define (prime? n)
(= n (smallest-divisor n)))
  1. 费马检查(增长阶为Θ(log n))

费马小定理:如果a是小于n的任意正整数,那么a的n次方与a模n同余

依旧抽象,拆分各个部件

;;求模
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder (square (expmod base (/ exp 2) m))
m))
(else
(remainder (* base (expmod base (- exp 1) m))
m))))
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder (square (expmod base (/ exp 2) m))
m))
(else
(remainder (* base (expmod base (- exp 1) m))
m))))

概率方法:

在费马定理中,通过测试只能说明有很强的证据说明这个数是素数,而且确实存在能够骗过费马定理的整数,在密码学中也有用到概率算法的地方

** 在这小节里:主要讲的是在程序执行的过程中所产生的计算,和这些计算所导致的空间和时间效率,还涉及了一点优化,其中最启发我的还是有关递归的想法:首先递归的主要思想应该是把问题分解成子问题,而且是完备的子问题,能够考虑到所有情况,在最后向上返回的时候才能保证正确,之后是降低规模,如果没有降低规模,递归就毫无意义,而最后降低到的就是最小的退化情况了**

SICP读书笔记 1.2的更多相关文章

  1. 【SICP读书笔记(一)】正则序展开的特殊情况

    scheme解释器有两种实现方式,一种是应用序,先对每个参数求值,再以首过程对所有求得的参数求值. 第二种是正则序,会“完全展开然后归约”(书中原文) SICP中的练习1.5,让我困惑了一下.原题如下 ...

  2. SICP读书笔记 1.1

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  3. SICP读书笔记 3.5

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  4. SICP读书笔记 3.4

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  5. SICP读书笔记 3.2

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  6. SICP读书笔记 3.3

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  7. SICP读书笔记 3.1

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  8. SICP读书笔记 2.5

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  9. SICP读书笔记 2.4

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  10. SICP读书笔记 2.3

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

随机推荐

  1. Luogu_4886 快递员

    Luogu_4886 快递员 一道淀粉质的题目. 先考虑最简单的算法,那便是对每个点都求一边.时间复杂度O(NM) 然后如果我们把每个点的结果对应一个高度,我们会发现.最优解是在这个对应高度形成的三维 ...

  2. 【SP2713 GSS4 - Can you answer these queries IV】 题解

    题目链接:https://www.luogu.org/problemnew/show/SP2713 真暴力啊. 开方你开就是了,开上6次就都没了. #include <cmath> #in ...

  3. HDU 2076 夹角有多大

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2076 夹角有多大(题目已修改,注意读题) Time Limit: 1000/1000 MS (Java ...

  4. Eclipse部署Web项目,常用操作和常见错误的解决方案

    部署Web项目到tomcat 在eclipse中找到Servers项,打开服务器(F3)(建议直接删除服务器,重新建立再设置比较好)1.Servers Locations 中选择Use Tomcat ...

  5. javascript知识点杂记

    for(var i = 0; i < 10; i++) { setTimeout(function() { console.log(i); //输出10个10,因为setTimeout方法是异步 ...

  6. IIS配置导入导出

    使用管理员身份运行cmd 应用程序池: # 导出所有应用程序池 %windir%\system32\inetsrv\appcmd list apppool /config /xml > c:\a ...

  7. Android开发 使用HBuilder的缓存方法

    /* * 中间就可以进行封装操作 * mui就代表mui,owner就代表window的app属性,就是一个传值 */ (function(mui,owner) { /** * 获取当前状态 **/ ...

  8. day 33 线程

    1.线程理论 什么是线程:线程是cpu的最小执行单位(实体),进程是操作系统的数据资源分配单位   2.线程的两种创建方式(重点) 查看线程的pid:使用os模块查看id,线程的id应该是相同的 3. ...

  9. HTML学习笔记--元素

    1. 开始标签称为起始标签,结束标签称为闭合标签 openging tag closing tag HTML 元素以开始标签起始 HTML 元素以结束标签终止 元素的内容是开始标签与结束标签之间的内容 ...

  10. j使用数组实现约瑟夫环 java

    我们首先来看一下约瑟夫环问题: 给定m个人,m个人围成一圈,在给定一个数n,从m个人中的第一个人每第n个人便将其除去,求被最后一个出去的人的编号. 思路: 建立一个长度为m+1的数组,将其的内容初始化 ...