【bzoj2906】颜色 分块
题目描述
输入
输出
总共Q行,对于每一个询问,输出权值总和
样例输入
4 2 3
1 1 2 2
1 4 1 2
10 11 9 10
3 0 0 0
样例输出
8
2
0
题解
分块
这种二叉数据结构维护不了,又强制在线的,大概就是分块了。
维护 $f[i][j][k]$ 表示从第 $i$ 块到第 $j$ 块,权值在 $[1,k]$ 之间的个数平方和。为了方便处理零碎部分,还要维护 $c[i][j][k]$ 表示从第 $i$ 块到第 $j$ 块,权值为 $k$ 的个数。
对于询问转化为权值的前缀相减处理,整块部分直接拿出答案,零碎部分暴力枚举,算出对平方和的贡献。
设块的大小为 $si$ ,则预处理时间复杂度为 $O(n·(\frac n{si})^2)$ ,询问时间复杂度为 $O(n·si)$ 。根据均值不等式,当 $si=n^{\frac 23}$ 时复杂度最优,为 $O(n^{\frac 53})$
#include <cstdio>
#include <cstring>
typedef unsigned int ui;
ui a[50010] , f[40][40][20010] , c[40][40][20010] , sum[20010] , cnt[20010];
int main()
{
ui n , m , q , si = 1 , i , j , k , l , r , x , y , bl , br , ans = 0;
scanf("%u%u%u" , &n , &m , &q);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
while(si * si * si < n * n) si ++ ;
for(i = 1 ; i <= (n - 1) / si + 1 ; i ++ )
{
for(j = i ; j <= (n - 1) / si + 1 ; j ++ )
{
for(k = (j - 1) * si + 1 ; k <= j * si && k <= n ; k ++ ) sum[a[k]] += cnt[a[k]] << 1 | 1 , cnt[a[k]] ++ ;
for(k = 1 ; k <= m ; k ++ ) c[i][j][k] = cnt[k] , f[i][j][k] = sum[k] + f[i][j][k - 1];
}
memset(sum , 0 , sizeof(sum));
memset(cnt , 0 , sizeof(cnt));
}
while(q -- )
{
scanf("%u%u%u%u" , &l , &r , &x , &y) , l ^= ans , r ^= ans , x ^= ans , y ^= ans;
bl = (l - 1) / si + 1 , br = (r - 1) / si + 1 , ans = f[bl + 1][br - 1][y] - f[bl + 1][br - 1][x - 1];
if(bl == br)
{
for(i = l ; i <= r ; i ++ ) if(a[i] >= x && a[i] <= y) ans += cnt[a[i]] << 1 | 1 , cnt[a[i]] ++ ;
for(i = l ; i <= r ; i ++ ) if(a[i] >= x && a[i] <= y) cnt[a[i]] -- ;
}
else
{
for(i = l ; i <= bl * si ; i ++ ) if(a[i] >= x && a[i] <= y) ans += (c[bl + 1][br - 1][a[i]] + cnt[a[i]]) << 1 | 1 , cnt[a[i]] ++ ;
for(i = r ; i > (br - 1) * si ; i -- ) if(a[i] >= x && a[i] <= y) ans += (c[bl + 1][br - 1][a[i]] + cnt[a[i]]) << 1 | 1 , cnt[a[i]] ++ ;
for(i = l ; i <= bl * si ; i ++ ) if(a[i] >= x && a[i] <= y) cnt[a[i]] -- ;
for(i = r ; i > (br - 1) * si ; i -- ) if(a[i] >= x && a[i] <= y) cnt[a[i]] -- ;
}
printf("%u\n" , ans);
}
return 0;
}
【bzoj2906】颜色 分块的更多相关文章
- bzoj2906 颜色 分块+块大小分析
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2906 题解 如果可以离线的话,那么这个题目就是一个莫队的裸题. 看上去这个数据范围也还会一个根 ...
- Luogu 1903 数颜色 | 分块
Luogu 1903 数颜色 | 分块 莫队不会啊-- 这道题直接分块也能卡过! 这道题的做法很有趣:对于每个位置i,记录它的颜色a[i]上一次出现的位置,记为pre[i]. 这样在查询一个区间[l, ...
- 【BZOJ-2453&2120】维护队列&数颜色 分块 + 带修莫队算法
2453: 维护队列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 653 Solved: 283[Submit][Status][Discuss] ...
- BZOJ 2120: 数颜色 分块
2120: 数颜色 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...
- 【BZOJ2453】维护队列/【BZOJ2120】数颜色 分块
[BZOJ2453]维护队列 Description 你小时候玩过弹珠吗? 小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N.为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色 ...
- 【bzoj2453】维护队列/【bzoj2120】数颜色 分块+二分
题目描述 你小时候玩过弹珠吗? 小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N.为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色的弹珠有多少.当然,A有时候会依据个人喜好, ...
- Bzoj 2453: 维护队列 && Bzoj 2120: 数颜色 分块,bitset
2453: 维护队列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 578 Solved: 247[Submit][Status][Discuss] ...
- bzoj2120 数颜色 分块
分块大法好 orz 处理出每个点的前驱和后继位置. 暴力修改,查询就在每个整块里查询pre<l的,暴力跑两边就好了 #include<cstdio> #include<cstr ...
- #6499. 「雅礼集训 2018 Day2」颜色 [分块,倍增,bitset]
bitset压位,因为是颜色数,直接倍增,重合部分不管,没了. // powered by c++11 // by Isaunoya #include <bits/stdc++.h> #d ...
随机推荐
- 20145234黄斐《Java程序设计》第九周
教材学习内容总结 整合数据库 JDBC入门 JDBC是用于执行SQL的解决方案,开发人员使用JDBC的标准接口,数据库厂商则对接口进行操作,开发人员无须接触底层数据库驱动程序的差异性,数据库本身是个独 ...
- 深入Redis 主从复制原理
原文:深入Redis 主从复制原理 1.复制过程 2.数据间的同步 3.全量复制 4.部分复制 5.心跳 6.异步复制 1.复制过程 从节点执行 slaveof 命令. 从节点只是保存了 slaveo ...
- WPF DataGrid使用简介
1)自动生成列 <DataGrid AutoGenerateColumns="True" Name="datagrid" CanUserAddRows=& ...
- 3060 抓住那头奶牛 USACO
3060 抓住那头奶牛 USACO 时间限制: 1 s 空间限制: 16000 KB 题目等级 : 黄金 Gold 题目描述 Description 农夫约翰被告知一头逃跑奶牛的位置,想要立即抓住它, ...
- 4040 EZ系列之奖金 (拓扑)
4040 EZ系列之奖金 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 钻石 Diamond 题目描述 Description 由于无敌的WRN在2015年世界英俊帅 ...
- 使用三层交换机实现不同vlan的互通
如下拓扑图所示,要实现vlan10(192.168.10.0/24)与vlan 20(192.168.20.0/24)的网络互通. 三层交换机配置: 创建vlan:Switch#configure t ...
- MVC捕获数据保存时的具体字段验证错误代码
////捕获验证错误代码 //try //{ // // 调试写数据库 //} //catch (DbEntityValidationException dbEx) //{ //}
- 一、EnterpriseFrameWork框架总体介绍
EnterpriseFrameWork框架是自己在工作之余的得意之作,经过了几年时间的不断重构,现在终于有了现在的样子:刚开始只是为了方便开发WEB系统,随着项目越做越多,新的功能也就不断补充进去,补 ...
- PHP反序列化漏洞代码审计—学习资料
1.什么是序列化 A.PHP网站的定义: 所有php里面的值都可以使用函数serialize()来返回一个包含字节流的字符串来表示.unserialize()函数能够重新把字符串变回php原来的值. ...
- 跟浩哥学自动化测试Selenium -- Selenium简介 (1)
Selenium 简介 Selenium 是一款开源的web自动化测试工具,用来模拟对浏览器的操作(主要是对页面元素的操作),简单来讲,其实就是一个jar包.Selenium早期的版本比如1.0市场占 ...