【bzoj2906】颜色 分块
题目描述
输入
输出
总共Q行,对于每一个询问,输出权值总和
样例输入
4 2 3
1 1 2 2
1 4 1 2
10 11 9 10
3 0 0 0
样例输出
8
2
0
题解
分块
这种二叉数据结构维护不了,又强制在线的,大概就是分块了。
维护 $f[i][j][k]$ 表示从第 $i$ 块到第 $j$ 块,权值在 $[1,k]$ 之间的个数平方和。为了方便处理零碎部分,还要维护 $c[i][j][k]$ 表示从第 $i$ 块到第 $j$ 块,权值为 $k$ 的个数。
对于询问转化为权值的前缀相减处理,整块部分直接拿出答案,零碎部分暴力枚举,算出对平方和的贡献。
设块的大小为 $si$ ,则预处理时间复杂度为 $O(n·(\frac n{si})^2)$ ,询问时间复杂度为 $O(n·si)$ 。根据均值不等式,当 $si=n^{\frac 23}$ 时复杂度最优,为 $O(n^{\frac 53})$
#include <cstdio>
#include <cstring>
typedef unsigned int ui;
ui a[50010] , f[40][40][20010] , c[40][40][20010] , sum[20010] , cnt[20010];
int main()
{
ui n , m , q , si = 1 , i , j , k , l , r , x , y , bl , br , ans = 0;
scanf("%u%u%u" , &n , &m , &q);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
while(si * si * si < n * n) si ++ ;
for(i = 1 ; i <= (n - 1) / si + 1 ; i ++ )
{
for(j = i ; j <= (n - 1) / si + 1 ; j ++ )
{
for(k = (j - 1) * si + 1 ; k <= j * si && k <= n ; k ++ ) sum[a[k]] += cnt[a[k]] << 1 | 1 , cnt[a[k]] ++ ;
for(k = 1 ; k <= m ; k ++ ) c[i][j][k] = cnt[k] , f[i][j][k] = sum[k] + f[i][j][k - 1];
}
memset(sum , 0 , sizeof(sum));
memset(cnt , 0 , sizeof(cnt));
}
while(q -- )
{
scanf("%u%u%u%u" , &l , &r , &x , &y) , l ^= ans , r ^= ans , x ^= ans , y ^= ans;
bl = (l - 1) / si + 1 , br = (r - 1) / si + 1 , ans = f[bl + 1][br - 1][y] - f[bl + 1][br - 1][x - 1];
if(bl == br)
{
for(i = l ; i <= r ; i ++ ) if(a[i] >= x && a[i] <= y) ans += cnt[a[i]] << 1 | 1 , cnt[a[i]] ++ ;
for(i = l ; i <= r ; i ++ ) if(a[i] >= x && a[i] <= y) cnt[a[i]] -- ;
}
else
{
for(i = l ; i <= bl * si ; i ++ ) if(a[i] >= x && a[i] <= y) ans += (c[bl + 1][br - 1][a[i]] + cnt[a[i]]) << 1 | 1 , cnt[a[i]] ++ ;
for(i = r ; i > (br - 1) * si ; i -- ) if(a[i] >= x && a[i] <= y) ans += (c[bl + 1][br - 1][a[i]] + cnt[a[i]]) << 1 | 1 , cnt[a[i]] ++ ;
for(i = l ; i <= bl * si ; i ++ ) if(a[i] >= x && a[i] <= y) cnt[a[i]] -- ;
for(i = r ; i > (br - 1) * si ; i -- ) if(a[i] >= x && a[i] <= y) cnt[a[i]] -- ;
}
printf("%u\n" , ans);
}
return 0;
}
【bzoj2906】颜色 分块的更多相关文章
- bzoj2906 颜色 分块+块大小分析
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2906 题解 如果可以离线的话,那么这个题目就是一个莫队的裸题. 看上去这个数据范围也还会一个根 ...
- Luogu 1903 数颜色 | 分块
Luogu 1903 数颜色 | 分块 莫队不会啊-- 这道题直接分块也能卡过! 这道题的做法很有趣:对于每个位置i,记录它的颜色a[i]上一次出现的位置,记为pre[i]. 这样在查询一个区间[l, ...
- 【BZOJ-2453&2120】维护队列&数颜色 分块 + 带修莫队算法
2453: 维护队列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 653 Solved: 283[Submit][Status][Discuss] ...
- BZOJ 2120: 数颜色 分块
2120: 数颜色 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...
- 【BZOJ2453】维护队列/【BZOJ2120】数颜色 分块
[BZOJ2453]维护队列 Description 你小时候玩过弹珠吗? 小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N.为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色 ...
- 【bzoj2453】维护队列/【bzoj2120】数颜色 分块+二分
题目描述 你小时候玩过弹珠吗? 小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N.为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色的弹珠有多少.当然,A有时候会依据个人喜好, ...
- Bzoj 2453: 维护队列 && Bzoj 2120: 数颜色 分块,bitset
2453: 维护队列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 578 Solved: 247[Submit][Status][Discuss] ...
- bzoj2120 数颜色 分块
分块大法好 orz 处理出每个点的前驱和后继位置. 暴力修改,查询就在每个整块里查询pre<l的,暴力跑两边就好了 #include<cstdio> #include<cstr ...
- #6499. 「雅礼集训 2018 Day2」颜色 [分块,倍增,bitset]
bitset压位,因为是颜色数,直接倍增,重合部分不管,没了. // powered by c++11 // by Isaunoya #include <bits/stdc++.h> #d ...
随机推荐
- Java读取Propertity文件
读取propertity 文件其实很简单,就是每次容易搞错文件路径,今天刚好项目又用到了,顺便记下来,以便以后参考: 目录如下: 代码如下: package com.infs.exam.process ...
- underscore.js 分析 第四天
查看underscore包含多少属性和方法 通过阅读JavaScript 获取对象的键的数组 var a = _; var arr = Object.keys(a); console.log(arr) ...
- 八月暑期福利,10本Python热门书籍免费送!
八月第一周,网易云社区联合博文视点为大家带来Python专场送书福利,10本关于Python的书籍内容涉及Python入门.绝技.开发.数据分析.深度学习.量化投资等.以下为书籍简介,送书福利请见文末 ...
- 手撕一个 Galgame 神器——Shub-Niggurath Project
一.想法 Galgame 我们大概可以分为好用的 Galgame 和好玩的 Galgame,但是如果你把好玩的 Galgame 拿来用的话,有时候会十分让人着急.如果你躺在床上,一只手还在按压键盘实际 ...
- 一步步带你配置IIS(包括错误分析)
今天趁着工作中的问题一下子来解决IIS配置 发布网站:点击VS发布网站 第一步:新建配置文件(我取名为webSite) : 第二步:选择发布方法并且选择把文件发布到哪里(比喻在D盘创建一个文件夹web ...
- 中国天气网 城市代码 sql语句
mysql的 下载地址:http://download.csdn.net/detail/songzhengdong82/6252651
- Linux 安装Zookeeper<准备>(使用Mac远程访问)
阅读本文需要安装JDK 一 Zookeeper简介 zookeeper是用java语言编写的一款为分布式应用所设计的协调服务 zookeeper是apacahe hadoop的子项目 使用zookee ...
- Java EE JSP内置对象及表达式语言
一.JSP内置对象 JSP根据Servlet API规范提供了一些内置对象,开发者不用事先声明就可使用标准变量来访问这些对象. JSP提供了9种内置对象: (一).request 简述: JSP编程中 ...
- idea 模版之自定义类与方法注释
idea 模版之自定义类与方法注释 很多公司都有要求的代码注释规范,我们每新建类或者方法的时候从新复制粘贴很麻烦,而且容易粘错. 当然自定义模板还可以用到很多地方,比如系统自带的 sout就是syst ...
- 433. Number of Islands【LintCode java】
Description Given a boolean 2D matrix, 0 is represented as the sea, 1 is represented as the island. ...