给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。1<=a<=b<=1e18.

注意到各位数字之和最大是153.考虑枚举这个东西。那么需要统计的是[0,a-1]和[0,b]内各位数字之和为x且能整除x的数字个数。

那么我们只需要数位dp一波即可。

令dp[pos][i][x]表示有pos位且数字之和为x的数mod P=i的数字个数。

则转移方程显然可得。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL dp[][][], p[];
int wei[]; LL dfs(int pos, int mod, int limit, int x, int P){
if (x<) return ;
if (pos==) return mod==&&x==;
if (!limit&&~dp[pos][mod][x]) return dp[pos][mod][x];
int up=limit?wei[pos]:;
LL res=;
FOR(i,,up) res+=dfs(pos-,(mod+P-(i*p[pos-]%P))%P,limit&&i==wei[pos],x-i,P);
if (!limit) dp[pos][mod][x]=res;
return res;
}
LL sol(LL x){
int pos=;
while (x) wei[++pos]=x%, x/=;
LL res=;
int top=min(,pos*);
FOR(i,,top) mem(dp,-), res+=dfs(pos,,,i,i);
return res;
}
int main ()
{
LL a, b;
p[]=; FO(i,,) p[i]=p[i-]*;
scanf("%lld%lld",&a,&b);
printf("%lld\n",sol(b)-sol(a-));
return ;
}

BZOJ 1799 同类分布(数位DP)的更多相关文章

  1. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  2. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  3. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  4. bzoj1799同类分布——数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...

  5. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  6. [luogu4127 AHOI2009] 同类分布 (数位dp)

    传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...

  7. BZOJ 1799 同类分布

    一开始没想出来..一看题解 我艹直接枚举数位的和啊.....怪不得给50s. 还是太蠢. #include<iostream> #include<cstdio> #includ ...

  8. BZOJ 3652: 大新闻(数位DP+概率论)

    不得不说数位DP和博弈论根本不熟啊QAQ,首先这道题嘛~~~可以分成两个子问题: 有加密:直接算出0~n中二进制每一位为0或为1分别有多少个,然后分位累加求和就行了= = 无加密:分别算出0~n中二进 ...

  9. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

随机推荐

  1. 20155327 嵌入式C语言课堂补交

    嵌入式C语言 题目要求 在作业本上完成附图作业,要认真看题目要求. 提交作业截图 作弊本学期成绩清零(有雷同的,不管是给别人传答案,还是找别人要答案都清零) 题目分析 分析一:提取插入时间 根据老师上 ...

  2. # 第二周c实践所遇见的问题

    第二周c实践所遇见的问题 地址符 在编程练习中时常忘记写入地址符,造成过运行错误,运行结果错误的惨痛教训,一个小小的错误耗费了很长的时间来寻找错误之处,养成写代码的一些好习惯势在必行.牢记scanf( ...

  3. jq移除最后一个class的值

    $(".his_pg_jl li").on("click",function() {//挂一个点击事件 $(this).addClass('back_img') ...

  4. Spring框架实例

    一,介绍 Spring框架核心是Ioc控制反转,只要在容器中注册以后,依赖从容器中获取即可 简单的理解:需要一个值,在程序中定义一个变量,但是不赋值,只设置set方法,运行时,容器为该变量赋值 二,实 ...

  5. Supervisor4.0和python2.7的crit问题,导致python进程阻塞

    1.问题原因 Supervisor高版本在守护python2.7的服务时,会crit并报错并倒至进程阻塞(python进程存在,但不在运行)的问题,一般会和字符集有关系 <type 'excep ...

  6. 一个自己实现的string

    最近实现了一个string类,添加了一些c++11元素. 除了基本的构造析构函数,拷贝构造和赋值函数,另外添加移动拷贝和赋值函数.default是一个很方便的特性有木有. //default cons ...

  7. win7升级到win10,出现算术运算溢出问题

    前台winform,后台java代码是: OutputStream ou=(OutputStream)response.getOutputStream(); ou.write(rightSet.get ...

  8. 用MYSQLworkbench导出数据excel

    步骤: 1.先从数据库中将表导出,右键需要导出的表格——>Table Data Export Wizard 2.点击Next,选择你需要把数据存放的文件路径.导出的数据格式(表格的话就默认选择C ...

  9. 理解学习Springboot(二)

    一.关闭banner 如果不想看到任何的banner,可以将其关闭. 当然也可以自己自定义banner,http://patorjk.com/software/taag/#p=display& ...

  10. JavaFX 学习笔记——jfoenix类库学习——raised风格按钮创建

    创建按钮 JFXButton jfxb = new JFXButton("hello"); jfxb.getStyleClass().add("button-raised ...