给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。1<=a<=b<=1e18.

注意到各位数字之和最大是153.考虑枚举这个东西。那么需要统计的是[0,a-1]和[0,b]内各位数字之和为x且能整除x的数字个数。

那么我们只需要数位dp一波即可。

令dp[pos][i][x]表示有pos位且数字之和为x的数mod P=i的数字个数。

则转移方程显然可得。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL dp[][][], p[];
int wei[]; LL dfs(int pos, int mod, int limit, int x, int P){
if (x<) return ;
if (pos==) return mod==&&x==;
if (!limit&&~dp[pos][mod][x]) return dp[pos][mod][x];
int up=limit?wei[pos]:;
LL res=;
FOR(i,,up) res+=dfs(pos-,(mod+P-(i*p[pos-]%P))%P,limit&&i==wei[pos],x-i,P);
if (!limit) dp[pos][mod][x]=res;
return res;
}
LL sol(LL x){
int pos=;
while (x) wei[++pos]=x%, x/=;
LL res=;
int top=min(,pos*);
FOR(i,,top) mem(dp,-), res+=dfs(pos,,,i,i);
return res;
}
int main ()
{
LL a, b;
p[]=; FO(i,,) p[i]=p[i-]*;
scanf("%lld%lld",&a,&b);
printf("%lld\n",sol(b)-sol(a-));
return ;
}

BZOJ 1799 同类分布(数位DP)的更多相关文章

  1. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  2. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  3. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  4. bzoj1799同类分布——数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...

  5. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  6. [luogu4127 AHOI2009] 同类分布 (数位dp)

    传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...

  7. BZOJ 1799 同类分布

    一开始没想出来..一看题解 我艹直接枚举数位的和啊.....怪不得给50s. 还是太蠢. #include<iostream> #include<cstdio> #includ ...

  8. BZOJ 3652: 大新闻(数位DP+概率论)

    不得不说数位DP和博弈论根本不熟啊QAQ,首先这道题嘛~~~可以分成两个子问题: 有加密:直接算出0~n中二进制每一位为0或为1分别有多少个,然后分位累加求和就行了= = 无加密:分别算出0~n中二进 ...

  9. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

随机推荐

  1. 安装虚拟机以及学习Linux基础入门

    安装虚拟机 参考基于VirtualBox虚拟机安装Ubuntu图文教程完成了虚拟机的安装,主要遇到了以下2个问题 在新建虚拟电脑的时候,如果类型选择了Linux,则版本就只能选择Ubuntu(32 位 ...

  2. OpenCV人脸识别的原理 .

    OpenCV人脸识别的原理 . 在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下: void GetImageRect(IplImage* orgImage, ...

  3. Mysql 5.5从零开始学阅读笔记

    第一章 1.什么是数据库? 数据库包含两层含义:保管数据的“仓库”,以及数据管理的方法和技术. 2.表 行被称为记录,列被称为字段 3.主键 primary key,用于唯一标识表中的每一条记录,主键 ...

  4. C# 调用C++ dll 返回char*调用方式(StringBuilder乱码)

    // CDLLDemo.cpp : 定义 DLL 应用程序的导出函数. // #include "stdafx.h" #include "string.h" # ...

  5. c++编译器处理 函数返回值

    X bar() { X xx; return xx; } // compiler generated temporary X __temp0; ( bar( __temp0 ), __temp0 ). ...

  6. Struts 2(五):输入校验 & 校验框架

    第一节 Struts2输入校验 1.1 输入校验的重要性 输入校验分为客户端校验和服务器端校验.客户端校验用来过滤用户的错误操作,一般使用JavaScript代码实现.服务器端校验用来防止非法用户的恶 ...

  7. Spring学习(七)-----Spring Bean的5种作用域

    在Spring中,bean作用域用于确定哪种类型的 bean 实例应该从Spring容器中返回给调用者.bean支持的5种范围域: 单例(singleton) - 每个Spring IoC 容器返回一 ...

  8. com.genuitec.runtime.generic.jee60 is not defined 导入项目的异常

    系统加载工程后,报错Target runtime com.genuitec.runtime.generic.jee60 is not defined,在发布工程的同事电脑上正常 新导入的工程,出问题很 ...

  9. Google Chrome插件分享

    前言 浏览器是大家日常使用最多的工具之一,对于程序员来说,Google Chrome浏览器当然是大家优选的最爱之一.面对Chrome丰富的插件真的是爱不释手,如何把自己的Chrome调教成自己心仪的样 ...

  10. 【Python入门学习】列表生成和函数生成器的方式实现杨辉三角

    列表生成: L = [i for i in range(10)] 列表生成器: g = (i for i in range(10)) 函数生成器使用的关键字yield实现 例如fib生成器 def f ...