给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。1<=a<=b<=1e18.

注意到各位数字之和最大是153.考虑枚举这个东西。那么需要统计的是[0,a-1]和[0,b]内各位数字之和为x且能整除x的数字个数。

那么我们只需要数位dp一波即可。

令dp[pos][i][x]表示有pos位且数字之和为x的数mod P=i的数字个数。

则转移方程显然可得。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL dp[][][], p[];
int wei[]; LL dfs(int pos, int mod, int limit, int x, int P){
if (x<) return ;
if (pos==) return mod==&&x==;
if (!limit&&~dp[pos][mod][x]) return dp[pos][mod][x];
int up=limit?wei[pos]:;
LL res=;
FOR(i,,up) res+=dfs(pos-,(mod+P-(i*p[pos-]%P))%P,limit&&i==wei[pos],x-i,P);
if (!limit) dp[pos][mod][x]=res;
return res;
}
LL sol(LL x){
int pos=;
while (x) wei[++pos]=x%, x/=;
LL res=;
int top=min(,pos*);
FOR(i,,top) mem(dp,-), res+=dfs(pos,,,i,i);
return res;
}
int main ()
{
LL a, b;
p[]=; FO(i,,) p[i]=p[i-]*;
scanf("%lld%lld",&a,&b);
printf("%lld\n",sol(b)-sol(a-));
return ;
}

BZOJ 1799 同类分布(数位DP)的更多相关文章

  1. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  2. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  3. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  4. bzoj1799同类分布——数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...

  5. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  6. [luogu4127 AHOI2009] 同类分布 (数位dp)

    传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...

  7. BZOJ 1799 同类分布

    一开始没想出来..一看题解 我艹直接枚举数位的和啊.....怪不得给50s. 还是太蠢. #include<iostream> #include<cstdio> #includ ...

  8. BZOJ 3652: 大新闻(数位DP+概率论)

    不得不说数位DP和博弈论根本不熟啊QAQ,首先这道题嘛~~~可以分成两个子问题: 有加密:直接算出0~n中二进制每一位为0或为1分别有多少个,然后分位累加求和就行了= = 无加密:分别算出0~n中二进 ...

  9. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

随机推荐

  1. 有关Laravel 4 的 Homestead 安装部署的细节

    对于Vagrant,我是相见恨晚的.有时候抽出几个小时的时间学会一种工具,对于将来可以节省几十甚至几百小时的时间. Vagant最大的好处就是节省了安装配置运行环境的时间,统一开发环境,同时可以最大限 ...

  2. IBM X3650M4简单排错方法

    如果出问题了,首先看开机的那个地方的灯是否显示正常,有黄色的灯亮一般都不正常: 这种服务器带有一个错误指示板,只需要在电源开关那,如上图,把那个蓝色的按钮往里面按,就能把里面的一个板子抽出来,可以看到 ...

  3. new表达式,operator new和placement new介绍

    new/delete是c++中动态构造对象的表达式 ,一般情况下的new/delete都是指的new/delete表达式,这是一个操作符,和sizeof一样,不能改变其意义. new/delete表达 ...

  4. python环境通过selenium实现自动化web登陆及终端邀请

    自动化主要的就是识别对象,可以在网上搜到各种各样的方法,自行百度.下面仅附上一个简单的例子. 环境搭建参考如下链接: https://www.cnblogs.com/hepeilinnow/p/101 ...

  5. Nginx之一:Nginx的编译安装

    一.Nginx简介 官方网址:http://nginx.org/ Nginx是由1994年毕业于俄罗斯国立莫斯科鲍曼科技大学的同学为俄罗斯rambler.ru公司开发的,开发工作最早从2002年开始, ...

  6. JAVA学习笔记--正则表达式

    正则表达式是一种强大而灵活的文本处理工具.使用正则表达式,可以让我们以编程的方式构造复杂的文本,并对输入的字符串进行搜索. 一.基础正则表达式语法(表格来自J2SE6_API) 字符 x 字符 x \ ...

  7. Matlab中 .' 的作用。

    Syntax B = A.' B = transpose(A)   Description B = A.' returns the nonconjugate transpose of A, that ...

  8. hadoop之mapper类妙用

    1. Mapper类 首先 Mapper类有四个方法: (1) protected void setup(Context context) (2) Protected void map(KEYIN k ...

  9. tendermint 跟tikv结合

    import ( "fmt" "github.com/allegro/bigcache" "github.com/kooksee/usmint/cmn ...

  10. 3.hive的thriftserver服务

    1.ThiftServer介绍 正常的hive仅允许使用HiveQL执行查询.更新等操作,并且该方式比较笨拙单一.幸好Hive提供了轻客户端的实现,通过HiveServer或者HiveServer2, ...