[BZOJ 1647][USACO 2007 Open] Fliptile 翻格子游戏
1647: [Usaco2007 Open]Fliptile 翻格子游戏
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 702 Solved: 281
[Submit][Status][Discuss]Description
Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M x N grid (1 <= M <= 15; 1 <= N <= 15) of square tiles, each of which is colored black on one side and white on the other side. As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make. Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".
约翰知道,那些高智力又快乐的奶牛产奶量特别高.所以他做了一个翻瓦片的益智游戏来娱乐奶牛.在一个M×N(1≤M,N≤15)的骨架上,每一个格子里都有一个可以翻转的瓦片.瓦片的一面是黑色的,而另一面是白色的.对一个瓦片进行翻转,可以使黑变白,也可以使白变黑.然而,奶牛们的蹄子是如此的巨大而且笨拙,所以她们翻转一个瓦片的时候,与之有公共边的相邻瓦片也都被翻转了.那么,这些奶牛们最少需要多少次翻转,使所有的瓦片都变成白面向上呢?如杲可以做到,输出字典序最小的结果(将结果当成字符串处理).如果不能做到,输出“IMPOSSIBLE”.Input
* Line 1: Two space-separated integers: M and N
* Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white
第1行输入M和N,之后M行N列,输入游戏开始时的瓦片状态.0表示白面向上,1表示黑面向上.Output
* Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.
输出M行,每行N个用空格隔开的整数,表示对应的格子进行了多少次翻转.Sample Input
4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1Sample Output
0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0OUTPUT DETAILS:
After flipping at row 2 column 1, the board will look like:
0 0 0 1
1 0 1 0
1 1 1 0
1 0 0 1After flipping at row 2 column 4, the board will look like:
0 0 0 0
1 0 0 1
1 1 1 1
1 0 0 1After flipping at row 3 column 1, the board will look like:
0 0 0 0
0 0 0 1
0 0 1 1
0 0 0 1After flipping at row 3 column 4, the board will look like:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0Another solution might be:
0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0
but this solution is lexicographically higher than the solution above.
第一眼看到数据范围可能很多人会想到状压 $DP$ , 然而看起来似乎是最大 $15 \times 15 = 225$ 的状压量根本无法枚举.
但是实际上我们可以推知, 根据上一行的黑白情况我们可以推知下一行的翻转情况. 因为在上一行已经确定的情况下下一行必须保证在黑色瓦片正下方进行翻转. 所以我们的所有情况都可以从第一行的黑白情况推知. 这时枚举量就从 $2^{k^2}$ 降到了 $2^k$ . 然后我们根据第一行枚举得出的黑白情况计算该种情况是否可以得出解. 如果得出解的话更新答案, 无解忽略即可.
枚举中途可以选择进行剪枝, 保存最低翻转数, 当已使用的翻转数大于这个值时停止继续求值.
参考代码
GitHub
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> const int MAXN=; int n;
int m;
int sum;
int flip;
int minfl;
int black;
bool ans[MAXN][MAXN];
bool raw[MAXN][MAXN];
bool tmp[MAXN][MAXN];
bool data[MAXN][MAXN]; void Change(int,int);
void Initialize();
bool Check(int);
bool Compare(); int main(){
freopen("fliptile.in","r",stdin);
freopen("fliptile.out","w",stdout);
bool solve=false;
Initialize();
for(int i=;i<(<<n);i++){
memset(tmp,,sizeof(tmp));
memcpy(data,raw,sizeof(raw));
flip=;
black=sum;
if(Check(i)){
memcpy(ans,tmp,sizeof(tmp));
minfl=flip;
solve=true;
}
}
if(solve){
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
printf("%d ",ans[i][j]?:);
}
putchar('\n');
}
}
else
puts("IMPOSSIBLE");
return ;
} inline void Change(int x,int y){
tmp[x][y]=true;
data[x][y]=!data[x][y];
black+=data[x][y]?:-;
if(x>){
data[x-][y]=!data[x-][y];
black+=data[x-][y]?:-;
}
if(x<n){
data[x+][y]=!data[x+][y];
black+=data[x+][y]?:-;
}
if(y>){
data[x][y-]=!data[x][y-];
black+=data[x][y-]?:-;
}
if(y<m){
data[x][y+]=!data[x][y+];
black+=data[x][y+]?:-;
}
} void Initialize(){
scanf("%d%d",&n,&m);
int tmp=;
minfl=0x7FFFFFFF;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&tmp);
raw[i][j]=tmp;
sum+=tmp;
}
}
} bool Check(int x){
for(int i=;i<n;i++){
if(x&(<<i)){
Change(,i+);
flip++;
if(flip>=minfl)
return false;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(data[i-][j]){
Change(i,j);
flip++;
if(flip>=minfl)
return false;
}
}
}
if(black>)
return false;
else
return true;
}
Backup
以及日常凸包图包

[BZOJ 1647][USACO 2007 Open] Fliptile 翻格子游戏的更多相关文章
- 【BZOJ 1647】[Usaco2007 Open]Fliptile 翻格子游戏 模拟、搜索
第一步我们发现对于每一个格子,我们只有翻和不翻两种状态,我们发现一旦确定了第一行操作,那么第二行的操作也就随之确定了,因为第一行操作之后我们要想得到答案就得把第一行全部为0,那么第二行的每一个格子的操 ...
- 1647: [Usaco2007 Open]Fliptile 翻格子游戏
1647: [Usaco2007 Open]Fliptile 翻格子游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 423 Solved: 173[ ...
- [Usaco2007 Open]Fliptile 翻格子游戏
[Usaco2007 Open]Fliptile 翻格子游戏 题目 Farmer John knows that an intellectually satisfied cow is a happy ...
- Fliptile 翻格子游戏
问题 B: [Usaco2007 Open]Fliptile 翻格子游戏 时间限制: 5 Sec 内存限制: 128 MB 题目描述 Farmer John knows that an intell ...
- [Usaco2007 Open]Fliptile 翻格子游戏题解
问题 B: [Usaco2007 Open]Fliptile 翻格子游戏 时间限制: 5 Sec 内存限制: 128 MB 题目描述 Farmer John knows that an intell ...
- 【BZOJ】1647: [Usaco2007 Open]Fliptile 翻格子游戏(暴力)
http://www.lydsy.com/JudgeOnline/problem.php?id=1647 自己太弱...看题解.. 竟然是枚举第一行的放法,,,因为一定要全部变0,所以将前一行1的在这 ...
- BZOJ 1647 [Usaco2007 Open]Fliptile 翻格子游戏:部分枚举 位运算
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1647 题意: 在一个n*m(1 <= n,m <= 15)的棋盘上,每一个格子 ...
- bzoj 1647: [Usaco2007 Open]Fliptile 翻格子游戏【dfs】
这个可以用异或高斯消元,但是我不会呀我用的暴搜 2的m次方枚举第一行的翻转情况,然后后面的就定了,因为对于一个j位置,如果i-1的j位置需要翻,那么一定要翻i的j,因为这是i-1的j最后翻的机会 按字 ...
- Fliptile 翻格子游戏[Usaco2007 Open]
题目描述 Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. ...
随机推荐
- PTA (Advanced Level) 1016 Phone Bills
Phone Bills A long-distance telephone company charges its customers by the following rules: Making a ...
- Android中数据的保存
1. 概述 在Android中有以下几种保存数据方式: 1). 使用sharedPreference去保存:只有应用程序自己可以访问 2). 保存在应用程序私有的文件夹下:只有应用程序自己可以访问 3 ...
- 关于Hall定理的学习
基本定义 \(Hall\) 定理是二分图匹配的相关定理 用于判断二分图是否存在完美匹配 存在完美匹配的二分图即满足最大匹配数为 \(min(|X|,|Y|)\) 的二分图,也就是至少有一边的点全部被匹 ...
- cordova程序加载pdf文件的2种方法(ios/android)
前言 公司目前的前端架构是微信端由vue全家桶负责h5网站的单页应用,android端和ios端则选择cordova打包成apk和app.其中,有一个业务逻辑是点击某个链接进入pdf的展示,h5的方案 ...
- SQL Serever学习14——存储过程和触发器
存储过程 在数据库中很多查询都是大同小异,编写他们费时费力,将他们保存起来,以后执行就很方便了,把SQL语句“封装”起来. 存储过程的概念 存储过程是一组SQL语句集,经过编译存储,可以”一次编译,多 ...
- Gauva的安装——入门篇
Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] .缓存 [caching] .原生类型支持 [primitives support] ...
- CSS浮动的3个特性(高手绕行)
1. 浮动元素会脱离正常的文档流,按照其外边距指定的位置相对于它的上一个块级元素(或父元素)显示: 代码示例: <!DOCTYPE HTML > <html> <hea ...
- mongodb在w10安装及配置
官网网站下载mongodb 第一步:安装 默认安装一直next,直到choose setup type,系统盘空间足够大,安装在c盘就好 第二步:配置及使用 1.创建目录mongodb,及三个文件夹d ...
- nodejs设置服务端允许跨域
//设置跨域访问 app.all('*', function(req, res, next) { res.header("Access-Control-Allow-Origin", ...
- HTML中字体的垂直排列
1.源代码: <html> <head> </head> <body> <div style="font-size:18px;writi ...