[BZOJ2423][HAOI2010]最长公共子序列
[BZOJ2423][HAOI2010]最长公共子序列
试题描述
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij = yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数。
输入
第1行为第1个字符序列,都是大写字母组成,以”.”结束。长度小于5000。
输出
第1行输出上述两个最长公共子序列的长度。
输入示例
ABCBDAB.
BACBBD.
输出示例
数据规模及约定
见“输入”
题解
第一问是最裸的最长公共子序列dp;第二问须在第一问基础上加一个计数问题,设 f(i, j) 是第一个串到第 i 位,第二个串到第 j 位的最长公共子序列长度,g(i, j) 为 f(i, j) 取最大值时的方案数,那么只要保证上一步转移前也是最优的情况就可以了,注意减去重复的计数。
记得开滚动数组!
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 5010
#define MOD 100000000
char A[maxn], B[maxn], cur;
int f[2][maxn], g[2][maxn]; int main() {
scanf("%s%s", A + 1, B + 1);
int na = strlen(A + 1), nb = strlen(B + 1);
A[na--] = '\0'; B[nb--] = '\0'; for(int i = 1; i <= nb; i++) g[0][i] = 1; g[0][0] = g[1][0] = 1;
for(int i = 1; i <= na; i++) {
cur ^= 1;
for(int j = 1; j <= nb; j++) {
f[cur][j] = max(f[cur^1][j], f[cur][j-1]);
if(A[i] == B[j]) f[cur][j] = max(f[cur][j], f[cur^1][j-1] + 1);
g[cur][j] = 0;
if(f[cur][j] == f[cur^1][j]) g[cur][j] += g[cur^1][j];
if(f[cur][j] == f[cur][j-1]) g[cur][j] += g[cur][j-1];
if(f[cur][j] == f[cur^1][j] && f[cur][j] == f[cur][j-1] && f[cur^1][j-1] == f[cur][j]) g[cur][j] -= g[cur^1][j-1];
if(A[i] == B[j] && f[cur][j] == f[cur^1][j-1] + 1) g[cur][j] += g[cur^1][j-1];
if(g[cur][j] > MOD) g[cur][j] %= MOD;
if(g[cur][j] < 0) g[cur][j] = (g[cur][j] % MOD) + MOD;
// printf("%d %d: %d %d\n", i, j, f[cur][j], g[cur][j]);
}
} printf("%d\n%d\n", f[cur][nb], g[cur][nb]); return 0;
}
[BZOJ2423][HAOI2010]最长公共子序列的更多相关文章
- BZOJ2423 HAOI2010最长公共子序列(动态规划)
大讨论.注意去重. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib& ...
- 【BZOJ2423】[HAOI2010]最长公共子序列 DP
[BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- 【BZOJ2423】最长公共子序列(动态规划)
[BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...
- 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)
2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...
- 【bzoj2423】最长公共子序列[HAOI2010](dp)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...
- bzoj:2423: [HAOI2010]最长公共子序列
Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...
- [HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- LG2516 【[HAOI2010]最长公共子序列】
前言 感觉这几篇仅有的题解都没说清楚,并且有些还是错的,我再发一篇吧. 分析 首先lcs(最长公共子序列)肯定是板子.但这题要求我们不能光记lcs是怎么打的,因为没这部分分,并且另外一个方程的转移要用 ...
随机推荐
- 备忘:SSRS技巧三则
前言 最近在弄SSRS,发现了三个小技巧.在此记录一下.免得以后忘了. 技巧 1. SSRS输出成EXCEL时,让两个dataset各占一个sheet, 这个简单,在其中一个table的属性加上pag ...
- 第三章:javascript: 列表
在日常生活中,人们经常使用列表:待办事项列表,购物清单,十佳榜单,最后十名榜单等.计算机也在使用列表,尤其是列表中元素保存的是太多时.当不需要一个很长的序列中查找元素,或对其进行排序时,列表显得尤为有 ...
- Java基础-常量池
在class文件中,“常量池”是最复杂也最值得关注的内容. Java是一种动态连接的语言,常量池的作用非常重要,常量池中除了包含代码中所定义的各种基本类型(如int.long等等)和对象型(如Stri ...
- 【Gym 100712B】Rock-Paper-Scissors
题 题意 对给定的对手的出拳顺序,如果只能按几个R,然后几个P,再几个S的顺序出拳(几个也可以是0个),那么求赢的方法有多少种. 分析 我原来想枚举P开始的位置和S开始的位置然后算得分,但是超时了o( ...
- Java编程思想学习(十三) java I/O
Java中使用流来处理程序的输入和输出操作,流是一个抽象的概念,封装了程序数据于输入输出设备交换的底层细节.JavaIO中又将流分为字节流和字符流,字节流主要用于处理诸如图像,音频视频等二进制格式数据 ...
- Java编程思想学习(十) 正则表达式
正则表达式是一种强大的文本处理工具,使用正则表达式我们可以以编程的方法,构造复杂的文本模式,并且对输入的字符串进行搜索.在我看来,所谓正则表达式就是我们自己定义一些规则,然后就可以验证输入的字符串是不 ...
- 从svn服务器自动同步到另一台服务器
需求场景 A commit B post-commit C (workstation) --------------> (svn server) ---------------------> ...
- RegexBuddy正则表达式工具
RegexBuddy非常的好用,而且还能生成.net的代码. 我们在使用正则匹配时,毕竟.net提供的方法中,对于多行匹配就不能用单纯的正则去实现,而我们需要把它转换成相应的类库方法进行实现. 那么R ...
- php环境搭建工具包推荐
如题,无论是生产还是测试环境,推荐一下这个: http://www.phpstudy.net/ 同时,也是一个php学习的网站,和w3cschool差不错,但是这里只有php.
- HDU1242 Rescue
Rescue Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Description A ...