http://www.cnblogs.com/LBSer/p/4119841.html

1 lucene字典

使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找到该term所对应的倒排文档id列表等信息。实际上lucene索引文件后缀名为tim和tip的文件实现的就是lucene的字典功能。

怎么实现一个字典呢?我们马上想到排序数组,即term字典是一个已经按字母顺序排序好的数组,数组每一项存放着term和对应的倒排文档id列表。每次载入索引的时候只要将term数组载入内存,通过二分查找即可。这种方法查询时间复杂度为Log(N),N指的是term数目,占用的空间大小是O(N*str(term))。排序数组的缺点是消耗内存,即需要完整存储每一个term,当term数目多达上千万时,占用的内存将不可接受。

2 常用字典数据结构

很多数据结构均能完成字典功能,总结如下。

数据结构 优缺点
排序列表Array/List 使用二分法查找,不平衡
HashMap/TreeMap 性能高,内存消耗大,几乎是原始数据的三倍
Skip List 跳跃表,可快速查找词语,在lucene、redis、Hbase等均有实现。相对于TreeMap等结构,特别适合高并发场景(Skip List介绍
Trie 适合英文词典,如果系统中存在大量字符串且这些字符串基本没有公共前缀,则相应的trie树将非常消耗内存(数据结构之trie树
Double Array Trie 适合做中文词典,内存占用小,很多分词工具均采用此种算法(深入双数组Trie
Ternary Search Tree 三叉树,每一个node有3个节点,兼具省空间和查询快的优点(Ternary Search Tree
Finite State Transducers (FST) 一种有限状态转移机,Lucene 4有开源实现,并大量使用

3 FST原理简析

lucene从4开始大量使用的数据结构是FST(Finite State Transducer)。FST有两个优点:1)空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间;2)查询速度快。O(len(str))的查询时间复杂度。

下面简单描述下FST的构造过程(工具演示:http://examples.mikemccandless.com/fst.py?terms=&cmd=Build+it%21)。我们对“cat”、 “deep”、 “do”、 “dog” 、“dogs”这5个单词进行插入构建FST(注:必须已排序)。

1)插入“cat”

插入cat,每个字母形成一条边,其中t边指向终点。

2)插入“deep”

与前一个单词“cat”进行最大前缀匹配,发现没有匹配则直接插入,P边指向终点。

3)插入“do”

与前一个单词“deep”进行最大前缀匹配,发现是d,则在d边后增加新边o,o边指向终点。

4)插入“dog”

与前一个单词“do”进行最大前缀匹配,发现是do,则在o边后增加新边g,g边指向终点。

5)插入“dogs”

与前一个单词“dog”进行最大前缀匹配,发现是dog,则在g后增加新边s,s边指向终点。

最终我们得到了如上一个有向无环图。利用该结构可以很方便的进行查询,如给定一个term “dog”,我们可以通过上述结构很方便的查询存不存在,甚至我们在构建过程中可以将单词与某一数字、单词进行关联,从而实现key-value的映射。

4 FST使用与性能评测

我们可以将FST当做Key-Value数据结构来进行使用,特别在对内存开销要求少的应用场景。Lucene已经为我们提供了开源的FST工具,下面的代码是使用说明。

 public static void main(String[] args) {
try {
String inputValues[] = {"cat", "deep", "do", "dog", "dogs"};
long outputValues[] = {5, 7, 17, 18, 21};
PositiveIntOutputs outputs = PositiveIntOutputs.getSingleton(true);
Builder<Long> builder = new Builder<Long>(FST.INPUT_TYPE.BYTE1, outputs);
BytesRef scratchBytes = new BytesRef();
IntsRef scratchInts = new IntsRef();
for (int i = 0; i < inputValues.length; i++) {
scratchBytes.copyChars(inputValues[i]);
builder.add(Util.toIntsRef(scratchBytes, scratchInts), outputValues[i]);
}
FST<Long> fst = builder.finish();
Long value = Util.get(fst, new BytesRef("dog"));
System.out.println(value); //
} catch (Exception e) {
;
}
}

FST压缩率一般在3倍~20倍之间,相对于TreeMap/HashMap的膨胀3倍,内存节省就有9倍到60倍!(摘自:把自动机用作 Key-Value 存储),那FST在性能方面真的能满足要求吗?

下面是我在苹果笔记本(i7处理器)进行的简单测试,性能虽不如TreeMap和HashMap,但也算良好,能够满足大部分应用的需求。

参考文献

http://sbp810050504.blog.51cto.com/2799422/1361551

http://blog.sina.com.cn/s/blog_4bec92980101hvdd.html

http://blog.mikemccandless.com/2013/06/build-your-own-finite-state-transducer.html

http://examples.mikemccandless.com/fst.py?terms=mop%2F0%0D%0Amoth%2F1%0D%0Apop%2F2%0D%0Astar%2F3%0D%0Astop%2F4%0D%0Atop%2F5%0D%0Atqqq%2F6&cmd=Build+it%21

检索实践文章系列:

lucene索引文件大小优化小结

lucene join解决父子关系索引

排序学习实践

lucene如何通过docId快速查找field字段以及最近距离等信息?

lucene字典实现原理的更多相关文章

  1. lucene字典实现原理——FST

    转自:http://www.cnblogs.com/LBSer/p/4119841.html 1 lucene字典 使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找到 ...

  2. lucene字典实现原理(转)

    原文:https://www.cnblogs.com/LBSer/p/4119841.html 1 lucene字典 使用lucene进行查询不可避免都会使用到其提供的字典功能,即根据给定的term找 ...

  3. Elasticsearch Lucene 数据写入原理 | ES 核心篇

    前言 最近 TL 分享了下 <Elasticsearch基础整理>https://www.jianshu.com/p/e8226138485d ,蹭着这个机会.写个小文巩固下,本文主要讲 ...

  4. iOS 字典实现原理

    在目前的开发中,NSDictionary是经常被使用,不过很少人会研究字典NSDictionary底层的实现,下面我们来一起看一下NSDictionary的实现原理. 一.字典原理 字典通过使用- ( ...

  5. 03.什么是Lucene全文检索的原理01

    全文检索的原理:查询速度快,精准度高,可以根据相关度进行排序.它的原理是:先把内容分词,分词之后建索引. Lucene是apache下的一个开放源代码的全文检索引擎工具包. 提供了完整的查询引擎和索引 ...

  6. 42 (OC)* 字典实现原理--哈希原理

    一.NSDictionary使用原理 1.NSDictionary(字典)是使用 hash表来实现key和value之间的映射和存储的,hash函数设计的好坏影响着数据的查找访问效率. - (void ...

  7. lucene索引文件大小优化小结

    http://www.cnblogs.com/LBSer/p/4068864.html 随着业务快速发展,基于lucene的索引文件zip压缩后也接近了GB量级,而保持索引文件大小为一个可以接受的范围 ...

  8. lucene join解决父子关系索引

    http://www.cnblogs.com/LBSer/p/4417074.html 1 背景 以商家(Poi)维度来展示各种服务(比如团购(deal).直连)正变得越来越流行(图1a), 比如目前 ...

  9. lucene如何通过docId快速查找field字段以及最近距离等信息?

    http://www.cnblogs.com/LBSer/p/4419052.html 1 问题描述 我们的检索排序服务往往需要结合个性化算法来进行重排序,一般来说分两步:1)进行粗排序,这一过程由检 ...

随机推荐

  1. Json格式转化为string格式

    今天在学习Jsonp的时候,想通过服务端返回一段json数据,因为使用的服务端是NodeJs,那么就需要在js文件中实现返回json.(这里不懂的同学,可以先了解一下NodeJs的基础概念,在这里,我 ...

  2. KPI

    一.综合计划部KPI明细数据查询--xigu用户要求:需显示第三季度,即789三个月的明细数据解决方法:1.查看SSISC:\Users\Administrator\Documents\Visual ...

  3. java 链接jdbc

    import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sq ...

  4. 用定时器令P0(或其它IO口)产生多路方波

    void Timer0_isr(void) interrupt 1 using 1{ static unsigned char i;  //重新赋值 12M晶振计算,指令周期1uS,500x2=1mS ...

  5. C 语言 *** glibc detected *** free(): invalid next size (fast): 0x0000000000be1010 ***

    . . . . . LZ 今天在写一个 Socket 程序的时候使用 malloc(3) 在堆上动态分配了一个结构体的空间,在使用完之后用 free(3) 函数释放空间的时候报 invalid nex ...

  6. LeetCode OJ 150. Evaluate Reverse Polish Notation

    Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid operators are +, -, ...

  7. Hdu OJ 5115 Dire Wolf (2014ACM/ICPC亚洲区北京站) (动态规划-区间dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5115 题目大意:前面有n头狼并列排成一排, 每一头狼都有两个属性--基础攻击力和buff加成, 每一头 ...

  8. BHP编译器教程

    BHP编译器教程 BHP是一个WEB模版编程语言编译器,生成PHP后端代码. 最简单的Helloworld例子 编写一个hello.bhp文件 <? $hello="hello,wor ...

  9. 管理表空间和数据文件<六>

    数据库管理 -- 管理表空间和数据文件  介绍 表空间是数据库的逻辑组成部分.从物理上讲,数据库数据存放在数据文件中:从逻辑上讲,数据库则是存放在表空间中,表 空间由一个或多个数据文件组成. 数据库 ...

  10. XmlSerializer 对象的Xml序列化和反序列化,XMLROOT别名设置

    这篇随笔对应的.Net命名空间是System.Xml.Serialization:文中的示例代码需要引用这个命名空间.   为什么要做序列化和反序列化? .Net程序执行时,对象都驻留在内存中:内存中 ...