A - Airport Express

Time Limit:1000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Appoint description: System Crawler  (2014-03-01)

Description

Problem D: Airport Express

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the Economy-Xpress and theCommercial-Xpress. They travel at different speeds, take different routes and have different costs.

Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.

Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line.

The first line of each case contains 3 integers, namely N, S and E (2 ≤ N ≤ 500, 1 ≤ S, EN), which represent the number of stations, the starting point and where the airport is located respectively.

There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next Mlines give the information of the routes of the Economy-Xpress. Each consists of three integers X, Y and Z (X, YN, 1 ≤ Z ≤ 100). This means X and Y are connected and it takes Z minutes to travel between these two stations.

The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next K lines contain the information of the Commercial-Xpress in the same format as that of the Economy-Xpress.

All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "Ticket Not Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3

Sample Output

1 2 4
2
5

::刚开始还以为这道题路是单向的,wa了很多次。这道题枚举商业线的做法挺经典,跟判断某条线路是否在最短路上很类似(分别以起点st和终点en跑两次最短路,得dis,dis2,当dis[u]+w(u,v)+dis2[v]=dis[en],可以判断w(u,v)在最短路上),这道题我是用spfa算法做的

代码:

   1: #include <iostream>

   2: #include <cstdio>

   3: #include <cstring>

   4: #include <algorithm>

   5: #include <queue>

   6: #include <stack>

   7: using namespace std;

   8: typedef long long ll;

   9: const int INF=1e9+7;

  10: const int N=505;

  11: bool vis[N];

  12: int head[N];

  13: int dis[N],dis2[N],pre[N],pre2[N];

  14: int n,m,k,st,en,cnt=0;

  15:  

  16: struct edge

  17: {

  18:     int u,v,w,p;

  19:     edge() {}

  20:     edge(int a,int b,int c,int d):u(a),v(b),w(c),p(d) {}

  21: }e[N<<4];

  22:  

  23: void spfa(edge e[],int head[],int dis[],int st,int pre[])

  24: {

  25:     memset(vis,0,sizeof(vis));

  26:     for(int i=1; i<=n; i++) dis[i]=INF;

  27:     queue<int >q;

  28:     dis[st]=0;

  29:     q.push(st);

  30:     while(!q.empty())

  31:     {

  32:         int u=q.front();q.pop();

  33:         vis[u]=0;

  34:         for(int i=head[u]; ~i; i=e[i].p)

  35:         {

  36:             int v=e[i].v;

  37:             if(dis[u]+e[i].w<dis[v])

  38:             {

  39:                 dis[v]=dis[u]+e[i].w;

  40:                 pre[v]=u;

  41:                 if(!vis[v])

  42:                 {

  43:                     q.push(v);

  44:                     vis[v]=1;

  45:                 }

  46:             }

  47:         }

  48:     }

  49: }

  50:  

  51: void printa(int x)

  52: {

  53:     if(x==st)

  54:     {

  55:         printf("%d",x);

  56:         return;

  57:     }

  58:     printa(pre[x]);

  59:     printf(" %d",x);

  60: }

  61:  

  62: void printb(int x)

  63: {

  64:     printf(" %d",x);

  65:     if(x==en) return ;

  66:     printb(pre2[x]);

  67: }

  68:  

  69: int main()

  70: {

  71: //    freopen("in.txt","r",stdin);

  72:     int flag=0;

  73:     while(scanf("%d%d%d",&n,&st,&en)>0)

  74:     {

  75:         if(flag) printf("\n");

  76:         memset(head,-1,sizeof(head));

  77:         memset(pre,-1,sizeof(pre));

  78:         memset(pre2,-1,sizeof(pre2));

  79:         scanf("%d",&m);

  80:         cnt=0;

  81:         for(int i=0; i<m; i++)

  82:         {

  83:             int u,v,w;

  84:             scanf("%d%d%d",&u,&v,&w);

  85:             e[cnt]=edge(u,v,w,head[u]);

  86:             head[u]=cnt++;

  87:             e[cnt]=edge(v,u,w,head[v]);

  88:             head[v]=cnt++;

  89:         }

  90:         spfa(e,head,dis,st,pre);

  91:         spfa(e,head,dis2,en,pre2);

  92: //        for(int i=1; i<=n ; i++) printf("%ddis=%d\n",i,dis[i]);

  93: //        for(int i=1; i<=n ; i++) printf("%ddis2=%d\n",i,dis2[i]);

  94:  

  95:         scanf("%d",&k);

  96:         int a=0,b=0,L=dis[en];

  97:         for(int i=0; i<k; i++)

  98:         {

  99:             int u,v,w;

 100:             scanf("%d%d%d",&u,&v,&w);

 101:             if(dis[u]+dis2[v]+w<L)

 102:             {

 103:                 a=u,b=v,L=dis[u]+dis2[v]+w;

 104:             }

 105:             if(dis[v]+dis2[u]+w<L)

 106:             {

 107:                 a=v,b=u,L=dis[v]+dis2[u]+w;

 108:             }

 109:         }

 110:         if(a==0)

 111:         {

 112:             printa(en);

 113:             printf("\nTicket Not Used\n");

 114:         }

 115:         else

 116:         {

 117:             printa(a);

 118:             printb(b);

 119:             printf("\n%d\n",a);

 120:         }

 121:         printf("%d\n",L);

 122:         flag=1;

 123:     }

 124:     return 0;

 125: }

一下是一些测试数据:

/*

7 1 3
9

1 2 1

2 3 100

1 4 20

1 5 10

5 4 10

5 6 10

6 4 20

4 7 30

3 7 10

0

(

1 4 7 3

Ticket Not Used

60

)

7 1 3

9

1 2 1

2 3 100

1 4 20

1 5 10

5 4 10

5 6 10

6 4 20

4 7 30

3 7 10

1

5 4 1

(

1 5 4 7 3

5

51

)

*/

/*

3 1 3

1

2 3 2

1

1 2 1

3 1 3

2

1 2 8

2

1 2 1

2 3 2

4 1 4

2

1 2 8

3 4 1000

2

1 2 1

2 3 2

3 1 3

2

1 2 5

2 3 8

2

1 2 1

2 3 2

4 1 4

4

1 2 2

1 3 3

2 4 4

3 4 5

1

2 4 3

4 1 4

4

1 2 2

1 3 3

2 4 4

3 4 5

1

2 4 30

*/

Uva-11374-Airport Express的更多相关文章

  1. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  2. UVA 11374 Airport Express SPFA||dijkstra

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  3. UVA - 11374 Airport Express (Dijkstra模板+枚举)

    Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...

  4. UVA 11374 Airport Express(最短路)

    最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...

  5. UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

    题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...

  6. UVA 11374 Airport Express(枚举+最短路)

    枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...

  7. UVa 11374 - Airport Express ( dijkstra预处理 )

    起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b);  ans = min( d1[a] + cost(a, b ...

  8. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  9. uva 11374 最短路+记录路径 dijkstra最短路模板

    UVA - 11374 Airport Express Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %l ...

  10. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

随机推荐

  1. 小知识~LocalDB在IIS上如何成功配置

    LocalDB使用确实方便,它不像SQLSERVER那么重,对一个测试的DEMO或者并发量不大的项目可以使用它,但在进行IIS部署时,可能会出现一些问题,即你的IIS可能没有权限访问你的LocalDB ...

  2. 晒自己做的一个管理系统(清新风格)EasyUI

    最近项目结束了,现在也要自己总结一下自己的成果了,总结会加深自己对项目的印象的.这里我就先晒一些作品图片了,希望大家看了会赞美一个! 项目虽然结束了,但是接下来的这个项目可就不是我一个人可以搞定的了, ...

  3. php中设定一个全局异常处理。全局catch。默认catch。默认异常处理

    <?php function handleMissedException($e) { echo "Sorry, something is wrong. Please try again ...

  4. [moka同学笔记]yii2.0的下拉菜单与bootstrap下拉菜单

    1.yii2下拉菜单 <li class="dropdown"><a href="#" class="dropdown-toggle ...

  5. [小北De编程手记] : Lesson 07 - Selenium For C# 之 窗口处理

    在实际的自动化测试过程中,我们会遇见许多需要对窗口进行处理的情况.比如,点击删除某条信息的时候系统会显示一个Alert框.或者点击某个超链接时会在浏览器中打开一个新的页面.这一篇,来和大家分享一下Se ...

  6. 【GOF23设计模式】适配器模式

    来源:http://www.bjsxt.com/ 一.[GOF23设计模式]_适配器模式.对象适配器.类适配器.开发中场景  适配器模式  笔记本电脑只有USB接口,新买的键盘是PS2接口的,需要用适 ...

  7. 自制html5塔防游戏

    这是一款由html5里的canvas和普通html元素结合的小游戏,游戏比较简单单一.主要是以建塔,防御为主.下面是游戏的一张截图: 这里是游戏的地址,直接去玩下吧:http://www.lovewe ...

  8. XML的解析方式(Java)

    dom方式解析 根据XML的层级结构在内存中分配一个树形结构,把XML的标签.属性和文本都封装成对象 优点:如果很方便实现增删改操作 缺点:如果文件过大,会造成内存溢出   sax方式解析 采用事件驱 ...

  9. VisualStudio中解决方案

    在VS中创建一个项目通常会生成一个解决方案文件(.sln)和一个隐藏的解决方案用户选项文件(.suo). 解决方案文件是一个文本文件,包含以下信息: 将被加载的所有项目以构成完整解决方案的项目清单 解 ...

  10. CRM 2013 安装前系统和数据库的基础配置

    Win Serer 2012 域控安装参考:http://smallc.blog.51cto.com/926344/1034868  (其中最重要的几步:创建域控(ActiveDirectory域服务 ...