最近公共祖先(lca)
囧啊囧。
lca的求法太多了
倍增,tarjan,st,lct,hld....
后边三个我就不写了,其中st我没写过,估计用不上,在线用倍增,离线用tarjan就行了。
嗯。
第一种,倍增(O(nlogn)~O(logn),在线):
倍增的思想用在树上,即可以求出lca。
我们维护二维数组,f[i][j],表示i号点的第2^j号祖先,显然2^0=1也就是f[i][0]就是他的父亲
我们需要用dfs维护一个深度数组(求lca需要用)
还需要倍增求出所有的f[i][j],学过st的都应该知道,在这里f[i][j]=f[ f[i][j-1] ][j]
然后是我们的求lca了,很简单,首先要将这两个点u和v调到同一深度,这样以后操作都是同深度的。
怎么调深度呢?很简单,将他们的深度相减,我们设为dep,那么这个dep的就对应了深一点的那个点需要上升的高度,恩,应该马上能想到,直接用二进制表示深度然后一直爬上去就行了,这就是倍增的思想,log级别
同一深度时,我们要同时上升啦~我们继续用倍增思想,依次上升2^k的高度。什么时候上升呢?当然是f[u][k]!=f[v][k]的时候,因为这说明他们的祖先还不同,他们位于2棵子树,所以要上升。并且顺序要从大到小!否则求不到最小的祖先,很容易理解的。
代码很简单,12行
#include <iostream>
#include <cstdio>
using namespace std;
#define dbg(x) cout << #x << " = " << x << endl
#define read(x) x=getint()
#define rdm(u) for(int i=ihead[u]; i; i=e[i].next) const int N=10000, M=15;
inline const int getint() { char c=getchar(); int k=1, ret=0; for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) ret=ret*10+c-'0'; return k*ret; }
struct ed { int to, next; } e[N<<1];
int cnt, ihead[N], n, m, dep[N], fa[N][M];
bool vis[N];
inline void add(const int &u, const int &v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
void dfs(const int &u, const int &d) {
vis[u]=1; dep[u]=d;
rdm(u) if(!vis[e[i].to]) { dfs(e[i].to, d+1); fa[e[i].to][0]=u; }
}
inline void bz() { for(int j=1; j<M; ++j) for(int i=1; i<=n; ++i) fa[i][j]=fa[fa[i][j-1]][j-1]; }
inline int lca(int u, int v) {
if(dep[u]<dep[v]) swap(u, v);
int d=dep[u]-dep[v];
for(int i=M-1; i>=0; --i) if((1<<i)&d) u=fa[u][i];
if(u==v) return u;
for(int i=M-1; i>=0; --i) if(fa[u][i]!=fa[v][i]) u=fa[u][i], v=fa[v][i];
return fa[u][0];
}
int main() {
read(n); read(m);
for(int i=1; i<n; ++i) add(getint(), getint());
dfs(1, 1); bz();
while(m--) printf("%d\n", lca(getint(), getint()));
return 0;
}
第二种,tarjan(O(n+并查集)~O(1) ,离线):
速度略优于第一种。
tarjan求lca也很好理解的,我们假设现在的点为x
那么它子树作为一个已经被访问完的集合,并且在这些集合内的lca已经全部求出。
那么我们只要将这些子树和他子集合并就行了。
在这个集合求lca的方法很简单,用并查集即可。
代码也很短,也大概12行吧
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
#define dbg(x) cout << #x << " = " << x << endl
#define read(x) x=getint()
#define rdm(u) for(int i=ihead[u]; i; i=e[i].next) const int N=10005, M=10005;
inline const int getint() { char c=getchar(); int k=1, ret=0; for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) ret=ret*10+c-'0'; return k*ret; }
struct ed { int to, next; } e[N<<1];
int cnt, ihead[N], n, m, lca[M], fa[N], p[N];
bool vis[N];
vector<pair<int, int> > q[N];
inline void add(const int &u, const int &v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
int ifind(const int &x) { return x==p[x]?x:p[x]=ifind(p[x]); }
void tarjan(int u) {
p[u]=u;
rdm(u) if(e[i].to!=fa[u]) {
fa[e[i].to]=u; tarjan(e[i].to); p[e[i].to]=u;
}
vis[u]=1;
int t=q[u].size();
for(int i=0; i<t; ++i) if(vis[q[u][i].first]) lca[q[u][i].second]=ifind(q[u][i].first);
}
int main() {
read(n); read(m);
for(int i=1; i<n; ++i) add(getint(), getint());
int u, v;
for(int i=1; i<=m; ++i) {
read(u); read(v);
q[v].push_back(pair<int, int> (u, i));
q[u].push_back(pair<int, int> (v, i));
}
tarjan(1);
for(int i=1; i<=m; ++i) printf("%d\n", lca[i]);
return 0;
}
最近公共祖先(lca)的更多相关文章
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- [模板] 最近公共祖先/lca
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)
Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...
- 【Leetcode】查找二叉树中任意结点的最近公共祖先(LCA问题)
寻找最近公共祖先,示例如下: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ ...
- 最近公共祖先LCA(Tarjan算法)的思考和算法实现
LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...
- 查找最近公共祖先(LCA)
一.问题 求有根树的任意两个节点的最近公共祖先(一般来说都是指二叉树).最近公共祖先简称LCA(Lowest Common Ancestor).例如,如下图一棵普通的二叉树. 结点3和结点4的最近公共 ...
- 最近公共祖先(LCA)的三种求解方法
转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca- ...
随机推荐
- Centos6.7安装Apache2.4+Mysql5.6+Apache2.4
首先说下思路,因为一开始系统上已经跑了一套完成的 PHP 环境,那时候都是快速自动安装的,如果是跑一些5.3以下版本的话,很简单,几个指令,10分钟搞定了. 但现在要升级,彻底一点的话,唯有推倒重来了 ...
- Controller之间传递数据:属性传值
在项目中,Controller之间传递数据非常之多,这里简单介绍一下属性传值.例如有FirstController 和 SecondController,数据从First传递到Second中,我们如何 ...
- C/C++程序终止时执行的函数——atexit()函数详解
很多时候我们需要在程序退出的时候做一些诸如释放资源的操作,但程序退出的方式有很多种,比如main()函数运行结束.在程序的某个地方用exit()结束程序.用户通过Ctrl+C或Ctrl+break操作 ...
- Quartz作业调度框架
Quartz 是一个开源的作业调度框架,它完全由 Java 写成,并设计用于 J2SE 和 J2EE 应用中.它提供了巨大的灵活性而不牺牲简单性.你能够用它来为执行一个作业而创建简单的或复杂的调度.本 ...
- 《ASP.NET MVC4 WEB编程》学习笔记------Entity Framework的Database First、Model First和Code Only三种开发模式
作者:张博出处:http://yilin.cnblogs.com Entity Framework支持Database First.Model First和Code Only三种开发模式,各模式的开发 ...
- h5在微信中不允许放大缩小页面
在头部添加 <meta name="viewport" content="width=device-width, initial-scale=1, maximum- ...
- Heap:Moo University - Financial Aid(POJ 2010)
牛的学校 题目大意:这只Bessie真是太顽皮了,她又搞了个学校,准备招生,准备通过一个考试筛选考生,但是不能招到每个学生,每个学生也不能一定能上学,要资助,问你在一定资金内,怎么收学生,使收到 ...
- linux下emacs配置文件
1:安装.在ubuntu下使用命令 sudo apt-get install emacs,即可,我使用的是ubuntu的10.04的版本,在里面使用了据说是163的2个源. 1.1:如何更新快速的源, ...
- ubuntu tar 命令详细讲解
Ubuntu--tar命令 tar zxvf ut6410-android2.1.tgz tar zcvf ut6410-android2.1.tgz ut6410-android2.1/ tar - ...
- Java性能优化权威指南-读书笔记(五)-JVM性能调优-吞吐量
吞吐量是指,应用程序的TPS: 每秒多少次事务,QPS: 每秒多少次查询等性能指标. 吞吐量调优就是减少垃圾收集器消耗的CPU周期数,从而将更多的CPU周期用于执行应用程序. CMS吞吐调优 CMS包 ...