囧啊囧。

lca的求法太多了

倍增,tarjan,st,lct,hld....

后边三个我就不写了,其中st我没写过,估计用不上,在线用倍增,离线用tarjan就行了。

嗯。

第一种,倍增(O(nlogn)~O(logn),在线):

倍增的思想用在树上,即可以求出lca。

我们维护二维数组,f[i][j],表示i号点的第2^j号祖先,显然2^0=1也就是f[i][0]就是他的父亲

我们需要用dfs维护一个深度数组(求lca需要用)

还需要倍增求出所有的f[i][j],学过st的都应该知道,在这里f[i][j]=f[ f[i][j-1] ][j]

然后是我们的求lca了,很简单,首先要将这两个点u和v调到同一深度,这样以后操作都是同深度的。

怎么调深度呢?很简单,将他们的深度相减,我们设为dep,那么这个dep的就对应了深一点的那个点需要上升的高度,恩,应该马上能想到,直接用二进制表示深度然后一直爬上去就行了,这就是倍增的思想,log级别

同一深度时,我们要同时上升啦~我们继续用倍增思想,依次上升2^k的高度。什么时候上升呢?当然是f[u][k]!=f[v][k]的时候,因为这说明他们的祖先还不同,他们位于2棵子树,所以要上升。并且顺序要从大到小!否则求不到最小的祖先,很容易理解的。

代码很简单,12行

#include <iostream>
#include <cstdio>
using namespace std;
#define dbg(x) cout << #x << " = " << x << endl
#define read(x) x=getint()
#define rdm(u) for(int i=ihead[u]; i; i=e[i].next) const int N=10000, M=15;
inline const int getint() { char c=getchar(); int k=1, ret=0; for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) ret=ret*10+c-'0'; return k*ret; }
struct ed { int to, next; } e[N<<1];
int cnt, ihead[N], n, m, dep[N], fa[N][M];
bool vis[N];
inline void add(const int &u, const int &v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
void dfs(const int &u, const int &d) {
vis[u]=1; dep[u]=d;
rdm(u) if(!vis[e[i].to]) { dfs(e[i].to, d+1); fa[e[i].to][0]=u; }
}
inline void bz() { for(int j=1; j<M; ++j) for(int i=1; i<=n; ++i) fa[i][j]=fa[fa[i][j-1]][j-1]; }
inline int lca(int u, int v) {
if(dep[u]<dep[v]) swap(u, v);
int d=dep[u]-dep[v];
for(int i=M-1; i>=0; --i) if((1<<i)&d) u=fa[u][i];
if(u==v) return u;
for(int i=M-1; i>=0; --i) if(fa[u][i]!=fa[v][i]) u=fa[u][i], v=fa[v][i];
return fa[u][0];
}
int main() {
read(n); read(m);
for(int i=1; i<n; ++i) add(getint(), getint());
dfs(1, 1); bz();
while(m--) printf("%d\n", lca(getint(), getint()));
return 0;
}

第二种,tarjan(O(n+并查集)~O(1) ,离线):

速度略优于第一种。

tarjan求lca也很好理解的,我们假设现在的点为x

那么它子树作为一个已经被访问完的集合,并且在这些集合内的lca已经全部求出。

那么我们只要将这些子树和他子集合并就行了。

在这个集合求lca的方法很简单,用并查集即可。

代码也很短,也大概12行吧

#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
#define dbg(x) cout << #x << " = " << x << endl
#define read(x) x=getint()
#define rdm(u) for(int i=ihead[u]; i; i=e[i].next) const int N=10005, M=10005;
inline const int getint() { char c=getchar(); int k=1, ret=0; for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) ret=ret*10+c-'0'; return k*ret; }
struct ed { int to, next; } e[N<<1];
int cnt, ihead[N], n, m, lca[M], fa[N], p[N];
bool vis[N];
vector<pair<int, int> > q[N];
inline void add(const int &u, const int &v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
int ifind(const int &x) { return x==p[x]?x:p[x]=ifind(p[x]); }
void tarjan(int u) {
p[u]=u;
rdm(u) if(e[i].to!=fa[u]) {
fa[e[i].to]=u; tarjan(e[i].to); p[e[i].to]=u;
}
vis[u]=1;
int t=q[u].size();
for(int i=0; i<t; ++i) if(vis[q[u][i].first]) lca[q[u][i].second]=ifind(q[u][i].first);
}
int main() {
read(n); read(m);
for(int i=1; i<n; ++i) add(getint(), getint());
int u, v;
for(int i=1; i<=m; ++i) {
read(u); read(v);
q[v].push_back(pair<int, int> (u, i));
q[u].push_back(pair<int, int> (v, i));
}
tarjan(1);
for(int i=1; i<=m; ++i) printf("%d\n", lca[i]);
return 0;
}

最近公共祖先(lca)的更多相关文章

  1. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  2. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  3. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  4. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  5. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  6. POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)

    Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...

  7. 【Leetcode】查找二叉树中任意结点的最近公共祖先(LCA问题)

    寻找最近公共祖先,示例如下: 1 /           \ 2           3 /    \        /    \ 4    5      6    7 /    \          ...

  8. 最近公共祖先LCA(Tarjan算法)的思考和算法实现

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  9. 查找最近公共祖先(LCA)

    一.问题 求有根树的任意两个节点的最近公共祖先(一般来说都是指二叉树).最近公共祖先简称LCA(Lowest Common Ancestor).例如,如下图一棵普通的二叉树. 结点3和结点4的最近公共 ...

  10. 最近公共祖先(LCA)的三种求解方法

    转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca- ...

随机推荐

  1. 使用MegaCli和Smartctl获取普通磁盘

    设备名称: [root@DB232 shell]# cat /proc/scsi/scsi Attached devices:Host: scsi0 Channel: 02 Id: 00 Lun: 0 ...

  2. RadioButtonList单选和RequiredFieldValidator验证是否选中

    <asp:RadioButtonList ID="Radio2" RepeatDirection="Horizontal" runat="ser ...

  3. Object-c 控制语句

    控制语句: 分支语句   if-else  有控制机制    switch 循环语句   while    do-while  for 跳转语句   break,continue,goto

  4. Java中成员变量和局部变量的区别

    java面向对象过程中,最基本的两类变量就是成员变量和局部变量 成员变量是写在类中并且写在方法外部,一般写在每个类的头部,用于初始化或者方法操作,作用域是整个类被实例化到被销毁,中间变量都可以被外部方 ...

  5. Java for LeetCode 169 Majority Element

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  6. 4.django笔记之admin

    作者:刘耀 QQ:22102107 django-Admin django amdin是django提供的一个后台管理页面,改管理页面提供完善的html和css,使得你在通过Model创建完数据库表之 ...

  7. css样式自适应,支持数字

    td加上style="word-break: break-all;word-wrap: break-word;"样式即可

  8. 昨天晚上也弄不清楚是自己密码被盗了还是由于ip冲突

    所以还是尽量要相信自己所见到的,今天上午是安卓课程,说实话,昨天晚上都是2:30睡的,现在硬是要把时间待这么晚才回去睡,是因为我想尽快入睡,昨天晚上就是眼睛都有点睁不开了,所以就睡得很快,但是早上也是 ...

  9. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem C: The Trip(水题)

    Problem C: The Trip Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 19  Solved: 3[Submit][Status][Web ...

  10. C#控制管理VisualSVN Server

    VisualSVN Server可以用WMI接口管理(Windows Management Instrumentation). VisualSVN Server安装的计算机中,位于%VISUALSVN ...