字符串匹配与KMP算法实现
>>字符串匹配问题
字符串匹配问题即在匹配串中寻找模式串是否出现,
首先想到的是使用暴力破解,也就是Brute Force(BF或蛮力搜索) 算法,将匹配串和模式串左对齐,然后从左向右一个一个进行比较,
如果不成功则模式串向右移动一个单位,直到匹配成功或者到达匹配串最后仍然不成功,返回失败。
很明显,这种算法有很多的地方可以优化,假设要搜索的串为S,长度为n,要匹配的串为M,长度为m,时间复杂度为O(nm)。
>>几个优化的字符串匹配算法
(1)Boyer-Moore算法
(2)Rabin-Karp算法
>>KMP算法的理解
Knuth-Morris-Pratt算法以三个发明者命名,Knuth就是著名科学家Donald Knuth,鼎鼎大名, <The Art of Computer Programming>( 简称TAOCP)的作者。
KMP算法不太容易理解和实现,下面这段来自阮一峰的网络日志,对KMP的介绍比较简洁易懂,摘录下来,有时间再记录一下自己的理解和算法的实现。
这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。
1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.

因为B与A不匹配,搜索词再往后移。
3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.

接着比较字符串和搜索词的下一个字符,还是相同。
5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.

因为空格与A不匹配,继续后移一位。
12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.

下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
>>实现KMP算法
待续。
字符串匹配与KMP算法实现的更多相关文章
- Luogu 3375 【模板】KMP字符串匹配(KMP算法)
Luogu 3375 [模板]KMP字符串匹配(KMP算法) Description 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来 ...
- 字符串匹配的 KMP算法
一般字符串匹配过程 KMP算法是字符串匹配算法的一种改进版,一般的字符串匹配算法是:从主串(目标字符串)和模式串(待匹配字符串)的第一个字符开始比较,如果相等则继续匹配下一个字符, 如果不相等则从主串 ...
- 字符串匹配的kmp算法 及 python实现
一:背景 给定一个主串(以 S 代替)和模式串(以 P 代替),要求找出 P 在 S 中出现的位置,此即串的模式匹配问题. Knuth-Morris-Pratt 算法(简称 KMP)是解决这一问题的常 ...
- HDU 1711 Number Sequence (字符串匹配,KMP算法)
HDU 1711 Number Sequence (字符串匹配,KMP算法) Description Given two sequences of numbers : a1, a2, ...... , ...
- 字符串匹配(KMP 算法 含代码)
主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知 ...
- 实现字符串匹配的KMP算法
KMP算法是Knuth-Morris-Pratt算法的简称,它主要用于解决在一个长字符串S中匹配一个较短字符串s. 首先我们从整体来把我这个算法的思想. 字符串匹配的朴素算法: 我们容易想到朴素算法, ...
- 字符串匹配的KMP算法
~~~摘录 来源:阮一峰~~~ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串”BBC ABCDAB ABCDABCDABDE”,我想知道,里面是否包含另一个字符串”ABCDABD”? 许 ...
- 字符串匹配的KMP算法详解及C#实现
字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...
- 字符串匹配的KMP算法(转)
转载:http://kb.cnblogs.com/page/176818/ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE&quo ...
随机推荐
- Fast-cgi cgi nginx php-fpm 的关系 (转
Fast-cgi cgi nginx PHP-fpm 的关系 Fast-cgi是由cgi发展而来,是http服务器(http,nginx等)和动态脚本语言(php,perl等)之间的的通信接口, ...
- hdu 1205 吃糖果
思路: 仔细想想,想要不重复吃一种糖果, 把所有糖果吃完,只要所有糖果的和,减去最多的糖果+1>=最多糖果的数量即可不重复吃完. #include <stdio.h> int mai ...
- mysql zip 版本配置方法
-\bin 指 C:\Program Files\MySQL\MySQL Server 5.6\bin 1.增加环境变量 "PATH"-"-\bin" 2.修改 ...
- python之BIF函数在列表中的应用
1 Python 3.3.4 (v3.3.4:7ff62415e426, Feb 10 2014, 18:13:51) [MSC v.1600 64 bit (AMD64)] on win32 2 T ...
- html5浮动、等高、弹性盒模型
1px dashed虚线 box-sizing拯救了布局 1.inherit 继承父级 2.content-box(默认)-----这个盒子的边框.内边距 这2个值是不包括在width和height ...
- Android手机 Fildder真机抓包
Fiddler是一个http调试代理,它能 够记录所有的你电脑和互联网之间的http通讯,Fiddler 可以也可以让你检查所有的http通讯,设置断点,以及Fiddle 所有的“进出”的数据(指co ...
- HttpApplication的处理管道19个事件。
HttpApplication对象是由Asp.net帮助我们创建的,它是asp.net中处理请求的重要对象.为了便于扩展,HttpApplication采用处理管道的方式进行处理,将处理的步骤分为多个 ...
- sprintf()函数的用法
sprintf(g_strAppName, "%s",pLast+1); ----------------------------------------------------- ...
- GTP V0 和 GTP V1
GTP概述 GTP(GPRS Tunnelling Protocol)协议应用在SGSN 和GGSN 之间,为各个移动台(MS) 建立GTP 通道,GTP 通道是 GPRS服务节点(GSN) 之间的安 ...
- Java面试宝典2015版(绝对值得收藏超长版)
31.String s = "Hello";s = s + " world!";这两行代码执行后,原始的String对象中的内容到底变了没有? 没有.因为Str ...