1 n d v相当于给$a[x]+=v[\gcd(x,n)=d]$

\[\begin{eqnarray*}&&v[\gcd(x,n)=d]\\&=&v[\gcd(\frac{x}{d},\frac{n}{d})=1]\\&=&v\sum_{k|\gcd(\frac{x}{d},\frac{n}{d})}\mu(k)\\&=&\sum_{k|\frac{n}{d},dk|x}v\mu(k)\end{eqnarray*}\]

设$a[i]=\sum_{j|i}f[j]$

则每次修改相当于枚举$k|\frac{n}{d}$,然后给$f[dk]+=v\mu(k)$

查询$x=\sum_{i=1}^x a[i]=\sum_{i=1}^x\sum_{d|i}f[d]=\sum_{d=1}^x f[d]\frac{x}{d}$

可以分块统计,用树状数组维护f[]的前缀和

#include<cstdio>
typedef long long ll;
const int N=200001,M=2480000;
int T,n,m,i,j,x,y,z,p[N],tot,mu[N],g[N],nxt[M],v[M],ed,op;ll b[N],t;bool vis[N];
inline void addedge(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void add(int x,int y){for(;x<=n;x+=x&-x)b[x]+=y;}
inline ll sum(int x){ll t=0;for(;x;x-=x&-x)t+=b[x];return t;}
int main(){
for(mu[1]=1,i=2;i<N;i++){
if(!vis[i])p[++tot]=i,mu[i]=-1;
for(j=1;j<=tot;j++){
if(i*p[j]>=N)break;
vis[i*p[j]]=1;
if(i%p[j])mu[i*p[j]]=-mu[i];else{mu[i*p[j]]=0;break;};
}
}
for(i=1;i<N;i++)for(j=i;j<N;j+=i)addedge(j,i);
while(1){
scanf("%d%d",&n,&m);
if(!n)return 0;
for(i=1;i<=n;i++)b[i]=0;
printf("Case #%d:\n",++T);
while(m--){
scanf("%d%d",&op,&x);
if(op==1){
scanf("%d%d",&y,&z);
if(x%y==0)for(i=g[x/y];i;i=nxt[i])add(v[i]*y,z*mu[v[i]]);
}else{
for(t=0,i=1;i<=x;i=j+1)j=x/(x/i),t+=(sum(j)-sum(i-1))*(x/i);
printf("%lld\n",t);
}
}
}
}

  

BZOJ3853 : GCD Array的更多相关文章

  1. HDU 4947 GCD Array 容斥原理+树状数组

    GCD Array Time Limit: 11000/5500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  2. 【HDU4947】GCD Array (莫比乌斯反演+树状数组)

    BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\ ...

  3. bzoj 3853 : GCD Array

    搬运题解Claris:1 n d v相当于给$a[x]+=v[\gcd(x,n)=d]$ $\begin{eqnarray*}&&v[\gcd(x,n)=d]\\&=& ...

  4. 【HDU4947】GCD Array(莫比乌斯反演+树状数组)

    点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),询问\(\sum_{i=1}^xa_i\). 对于修改操作的推式子 ...

  5. 【莫比乌斯反演+树状数组+分块求和】GCD Array

    https://www.bnuoj.com/v3/contest_show.php?cid=9149#problem/I [题意] 给定长度为l的一个数组,初始值为0:规定了两种操作: [思路] 找到 ...

  6. 51Nod 算法马拉松15 记一次悲壮而又开心的骗分比赛

    OwO 故事的起源大概是zcg前天发现51Nod晚上有场马拉松,然后他就很开心的过去打了 神奇的故事就开始了: 晚上的时候我当时貌似正在写线段树?然后看见zcg一脸激动告诉我第一题有九个点直接输出B就 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. AIM Tech Round (Div. 2) D. Array GCD dp

    D. Array GCD 题目连接: http://codeforces.com/contest/624/problem/D Description You are given array ai of ...

  9. Codeforces 623B Array GCD

    Array GCD 最后的序列里肯定有a[1], a[1]-1, a[1]+1, a[n], a[n]-1, a[n]+1中的一个,枚举质因子, dp去check #include<bits/s ...

随机推荐

  1. Ubuntu 下 LAMP 的配置文件路径 转:

      配置文件路径: 1>apache 的配置文件路径 /etc/apache2/apache2.conf 2>apache 网站字符编码配置路径 /etc/apache2/conf.d/c ...

  2. 关于DCMTK3.6.0源代码编译的总结

    1.DCMTK cmake出来的代码是一样的.MT和MD版本的区别在于DCMTK工程下的每个子工程的代码生成中的MT还是MD,只要修改成为相应的值就可以了. 2.依赖包的选择.依赖包必须与上面中所说的 ...

  3. BZOJ1050 [HAOI2006]旅行

    其实这道题根本不用最短路算法... 我们可以就把边从小到大排序,那么只需要枚举大小两个端点,把中间的边都加进去判断联通性即可. 判断联通性显然用的是并查集. #include <cstdio&g ...

  4. Linux命令之exit - 退出当前shell【返回值状态】

    原文链接:http://codingstandards.iteye.com/blog/836625   (转载请注明出处) 用途说明 exit命令用于退出当前shell,在shell脚本中可以终止当前 ...

  5. JS实现多附件上传(asp.net)

    前几天,用户提出一个需求-多附件上传,另外,每个上传文件要加一个别名,本人创新少,从网上收集了资料,稍微改写,满足了 客户的需求.在应用到程序之前,先做了个小测试,测试通过,小高兴,就记录下了这个小测 ...

  6. cocos2dx阴影层的实现

    效果图 //ShadowLayer.h class ShadowLayer : public CCLayer { protected: ShadowLayer() :m_pRender(NULL) , ...

  7. Linux/Ubuntu下解压命令

    .tar 解包:tar xvf FileName.tar 打包:tar cvf FileName.tar DirName (注:tar是打包,不是压缩!) ——————————————— .gz 解压 ...

  8. HDU 5742 It's All In The Mind (贪心) 2016杭电多校联合第二场

    题目:传送门. 题意:求题目中的公式的最大值,且满足题目中的三个条件. 题解:前两个数越大越好. #include <iostream> #include <algorithm> ...

  9. DLL工程没有生成对应的lib文件

    要至少导出一个函数/变量才能产生lib 也就是说得用到__declspec(dllexport)

  10. ubuntu 下wireshark 软件安装与使用

    在ubuntu下,使用wireshark也是很有必要的.虽然可以使用tcpdump等工具. ubuntu:11.10     1. sudo apt-get install wireshark     ...