1 n d v相当于给$a[x]+=v[\gcd(x,n)=d]$

\[\begin{eqnarray*}&&v[\gcd(x,n)=d]\\&=&v[\gcd(\frac{x}{d},\frac{n}{d})=1]\\&=&v\sum_{k|\gcd(\frac{x}{d},\frac{n}{d})}\mu(k)\\&=&\sum_{k|\frac{n}{d},dk|x}v\mu(k)\end{eqnarray*}\]

设$a[i]=\sum_{j|i}f[j]$

则每次修改相当于枚举$k|\frac{n}{d}$,然后给$f[dk]+=v\mu(k)$

查询$x=\sum_{i=1}^x a[i]=\sum_{i=1}^x\sum_{d|i}f[d]=\sum_{d=1}^x f[d]\frac{x}{d}$

可以分块统计,用树状数组维护f[]的前缀和

#include<cstdio>
typedef long long ll;
const int N=200001,M=2480000;
int T,n,m,i,j,x,y,z,p[N],tot,mu[N],g[N],nxt[M],v[M],ed,op;ll b[N],t;bool vis[N];
inline void addedge(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void add(int x,int y){for(;x<=n;x+=x&-x)b[x]+=y;}
inline ll sum(int x){ll t=0;for(;x;x-=x&-x)t+=b[x];return t;}
int main(){
for(mu[1]=1,i=2;i<N;i++){
if(!vis[i])p[++tot]=i,mu[i]=-1;
for(j=1;j<=tot;j++){
if(i*p[j]>=N)break;
vis[i*p[j]]=1;
if(i%p[j])mu[i*p[j]]=-mu[i];else{mu[i*p[j]]=0;break;};
}
}
for(i=1;i<N;i++)for(j=i;j<N;j+=i)addedge(j,i);
while(1){
scanf("%d%d",&n,&m);
if(!n)return 0;
for(i=1;i<=n;i++)b[i]=0;
printf("Case #%d:\n",++T);
while(m--){
scanf("%d%d",&op,&x);
if(op==1){
scanf("%d%d",&y,&z);
if(x%y==0)for(i=g[x/y];i;i=nxt[i])add(v[i]*y,z*mu[v[i]]);
}else{
for(t=0,i=1;i<=x;i=j+1)j=x/(x/i),t+=(sum(j)-sum(i-1))*(x/i);
printf("%lld\n",t);
}
}
}
}

  

BZOJ3853 : GCD Array的更多相关文章

  1. HDU 4947 GCD Array 容斥原理+树状数组

    GCD Array Time Limit: 11000/5500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  2. 【HDU4947】GCD Array (莫比乌斯反演+树状数组)

    BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\ ...

  3. bzoj 3853 : GCD Array

    搬运题解Claris:1 n d v相当于给$a[x]+=v[\gcd(x,n)=d]$ $\begin{eqnarray*}&&v[\gcd(x,n)=d]\\&=& ...

  4. 【HDU4947】GCD Array(莫比乌斯反演+树状数组)

    点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),询问\(\sum_{i=1}^xa_i\). 对于修改操作的推式子 ...

  5. 【莫比乌斯反演+树状数组+分块求和】GCD Array

    https://www.bnuoj.com/v3/contest_show.php?cid=9149#problem/I [题意] 给定长度为l的一个数组,初始值为0:规定了两种操作: [思路] 找到 ...

  6. 51Nod 算法马拉松15 记一次悲壮而又开心的骗分比赛

    OwO 故事的起源大概是zcg前天发现51Nod晚上有场马拉松,然后他就很开心的过去打了 神奇的故事就开始了: 晚上的时候我当时貌似正在写线段树?然后看见zcg一脸激动告诉我第一题有九个点直接输出B就 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. AIM Tech Round (Div. 2) D. Array GCD dp

    D. Array GCD 题目连接: http://codeforces.com/contest/624/problem/D Description You are given array ai of ...

  9. Codeforces 623B Array GCD

    Array GCD 最后的序列里肯定有a[1], a[1]-1, a[1]+1, a[n], a[n]-1, a[n]+1中的一个,枚举质因子, dp去check #include<bits/s ...

随机推荐

  1. characterCustomezition的资源打包代码分析

    using System.Collections.Generic; using System.IO; using UnityEditor; using UnityEngine; class Creat ...

  2. BNUOJ 1038 Flowers

    春天到了,师大的园丁们又开始忙碌起来了. 京师广场上有一块空地,边界围成了一个多边形,内部被划分成一格一格的.园丁们想在这个多边形内的每一格内种植一些花. 现在请你帮忙计算一下一共最多可以种多少花. ...

  3. POJ 1308&&HDU 1272 并查集判断图

      HDU 1272 I - 小希的迷宫 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  4. Linux下crontab命令的用法

    cron来源于希腊单词chronos(意为“时间”),是linux系统下一个自动执行指定任务的程序.例如,你想在每晚睡觉期间创建某些文件或文件夹的备份,就可以用cron来自动执行. 服务的启动和停止 ...

  5. 【leetcode】Palindrome Partitioning

    Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...

  6. 对于sharepoint 的解决方案的实际说明

    对于sharepoint 的解决方案  实际上就是cab的包 你把***.wsp改为***.cab我们就可以查看这个包中的所有内容了

  7. Selenium测试Ajax程序(转)

    上周末参加了Qclub的百度技术沙龙,听了百度的孙景卫讲了Web自动化测试,讲的非常好,然后在小组讨论时又有幸座在了一起.我们讨论的一个内容,就是Ajax应用程序比原来的非Ajax程序更不易测试,这里 ...

  8. kettle转换JavaScript加载外部js文件

    日常开发中,时常会出现这样一种情况.有大量的函数是通用的.而每个JavaScript里面写一遍,给维护带来很大的困扰.因而需要将公共的函数写在外部js文件中.这时就需要引入外部的公共文件了.下面是在转 ...

  9. 利用 FFmpeg palettegen paletteuse 生成接近全色的 gif 动画

    下载FFmpeg-VideoToGif-v1.0.bat.7z FFmpeg 2.6 及以上版本有效 未使用palette时 使用palette后 @echo off set inFile=2015. ...

  10. mongoose学习笔记2--增删改查1

    查询 之前我们的集合已经创建成功,我们就先来进行第一步操作 —— 查询. 查询分很多种类型,如条件查询,过滤查询等等,今天只学习了最基本的find查询. 举例: 1.find查询: obj.find( ...