为什么list.sort()比Stream().sorted()更快?
昨天写了一篇文章《小细节,大问题。分享一次代码优化的过程》,里面提到了list.sort()和list.strem().sorted()排序的差异。
说到list sort()排序比stream().sorted()排序性能更好。
但没说到为什么。
有朋友也提到了这一点。
本文重新开始,先问是不是,再问为什么。
真的更好吗?
先简单写个demo
List<Integer> userList = new ArrayList<>();
Random rand = new Random();
for (int i = 0; i < 10000 ; i++) {
userList.add(rand.nextInt(1000));
}
List<Integer> userList2 = new ArrayList<>();
userList2.addAll(userList);
Long startTime1 = System.currentTimeMillis();
userList2.stream().sorted(Comparator.comparing(Integer::intValue)).collect(Collectors.toList());
System.out.println("stream.sort耗时:"+(System.currentTimeMillis() - startTime1)+"ms");
Long startTime = System.currentTimeMillis();
userList.sort(Comparator.comparing(Integer::intValue));
System.out.println("List.sort()耗时:"+(System.currentTimeMillis()-startTime)+"ms");
输出
stream.sort耗时:62ms
List.sort()耗时:7ms
由此可见list原生排序性能更好。
能证明吗?
证据错了。
再把demo变换一下,先输出stream.sort
List<Integer> userList = new ArrayList<>();
Random rand = new Random();
for (int i = 0; i < 10000 ; i++) {
userList.add(rand.nextInt(1000));
}
List<Integer> userList2 = new ArrayList<>();
userList2.addAll(userList);
Long startTime = System.currentTimeMillis();
userList.sort(Comparator.comparing(Integer::intValue));
System.out.println("List.sort()耗时:"+(System.currentTimeMillis()-startTime)+"ms");
Long startTime1 = System.currentTimeMillis();
userList2.stream().sorted(Comparator.comparing(Integer::intValue)).collect(Collectors.toList());
System.out.println("stream.sort耗时:"+(System.currentTimeMillis() - startTime1)+"ms");
此时输出变成了
List.sort()耗时:68ms
stream.sort耗时:13ms
这能证明上面的结论错误了吗?
都不能。
两种方式都不能证明什么。
使用这种方式在很多场景下是不够的,某些场景下,JVM会对代码进行JIT编译和内联优化。
Long startTime = System.currentTimeMillis();
...
System.currentTimeMillis() - startTime
此时,代码优化前后执行的结果就会非常大。
基准测试是指通过设计科学的测试方法、测试工具和测试系统,实现对一类测试对象的某项性能指标进行定量的和可对比的测试。
基准测试使得被测试代码获得足够预热,让被测试代码得到充分的JIT编译和优化。
下面是通过JMH做一下基准测试,分别测试集合大小在100,10000,100000时两种排序方式的性能差异。
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.results.format.ResultFormatType;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@Warmup(iterations = 2, time = 1)
@Measurement(iterations = 5, time = 5)
@Fork(1)
@State(Scope.Thread)
public class SortBenchmark {
@Param(value = {"100", "10000", "100000"})
private int operationSize;
private static List<Integer> arrayList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(SortBenchmark.class.getSimpleName())
.result("SortBenchmark.json")
.mode(Mode.All)
.resultFormat(ResultFormatType.JSON)
.build();
new Runner(opt).run();
}
@Setup
public void init() {
arrayList = new ArrayList<>();
Random random = new Random();
for (int i = 0; i < operationSize; i++) {
arrayList.add(random.nextInt(10000));
}
}
@Benchmark
public void sort(Blackhole blackhole) {
arrayList.sort(Comparator.comparing(e -> e));
blackhole.consume(arrayList);
}
@Benchmark
public void streamSorted(Blackhole blackhole) {
arrayList = arrayList.stream().sorted(Comparator.comparing(e -> e)).collect(Collectors.toList());
blackhole.consume(arrayList);
}
}
性能测试结果:

可以看到,list sort()效率确实比stream().sorted()要好。
为什么更好?
流本身的损耗
java的stream让我们可以在应用层就可以高效地实现类似数据库SQL的聚合操作了,它可以让代码更加简洁优雅。
但是,假设我们要对一个list排序,得先把list转成stream流,排序完成后需要将数据收集起来重新形成list,这部份额外的开销有多大呢?
我们可以通过以下代码来进行基准测试
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.results.format.ResultFormatType;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@Warmup(iterations = 2, time = 1)
@Measurement(iterations = 5, time = 5)
@Fork(1)
@State(Scope.Thread)
public class SortBenchmark3 {
@Param(value = {"100", "10000"})
private int operationSize; // 操作次数
private static List<Integer> arrayList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(SortBenchmark3.class.getSimpleName()) // 要导入的测试类
.result("SortBenchmark3.json")
.mode(Mode.All)
.resultFormat(ResultFormatType.JSON)
.build();
new Runner(opt).run(); // 执行测试
}
@Setup
public void init() {
// 启动执行事件
arrayList = new ArrayList<>();
Random random = new Random();
for (int i = 0; i < operationSize; i++) {
arrayList.add(random.nextInt(10000));
}
}
@Benchmark
public void stream(Blackhole blackhole) {
arrayList.stream().collect(Collectors.toList());
blackhole.consume(arrayList);
}
@Benchmark
public void sort(Blackhole blackhole) {
arrayList.stream().sorted(Comparator.comparing(Integer::intValue)).collect(Collectors.toList());
blackhole.consume(arrayList);
}
}
方法stream测试将一个集合转为流再收集回来的耗时。
方法sort测试将一个集合转为流再排序再收集回来的全过程耗时。
测试结果如下:

可以发现,集合转为流再收集回来的过程,肯定会耗时,但是它占全过程的比率并不算高。
因此,这部只能说是小部份的原因。
排序过程
我们可以通过以下源码很直观的看到。

- 1 begin方法初始化一个数组。
- 2 accept 接收上游数据。
- 3 end 方法开始进行排序。
这里第3步直接调用了原生的排序方法,完成排序后,第4步,遍历向下游发送数据。
所以通过源码,我们也能很明显地看到,stream()排序所需时间肯定是 > 原生排序时间。
只不过,这里要量化地搞明白,到底多出了多少,这里得去编译jdk源码,在第3步前后将时间打印出来。
这一步我就不做了。
感兴趣的朋友可以去测一下。
不过我觉得这两点也能很好地回答,为什么list.sort()比Stream().sorted()更快。
补充说明:
- 本文说的stream()流指的是串行流,而不是并行流。
- 绝大多数场景下,几百几千几万的数据,开心就好,怎么方便怎么用,没有必要去计较这点性能差异。
为什么list.sort()比Stream().sorted()更快?的更多相关文章
- 让互联网更快:新一代QUIC协议在腾讯的技术实践分享
本文来自腾讯资深研发工程师罗成在InfoQ的技术分享. 1.前言 如果:你的 App,在不需要任何修改的情况下就能提升 15% 以上的访问速度,特别是弱网络的时候能够提升 20% 以上的访问速度. 如 ...
- 比Python、Java更快的 Go 语言,能否称霸江湖?
关注之后加星标,江湖要事早知道 文章来源:jb51.net 有一种语言堪称比语言排行榜前五热门选手的Python.Java更快,它就是GO语言. Go于2009年11月正式宣布推出,成为开放源代码 ...
- Quick UDP Internet Connections 让互联网更快的协议,QUIC在腾讯的实践及性能优化
https://mp.weixin.qq.com/s/44ysXnVBUq_nJByMyX9n5A 让互联网更快:通往QUIC之路 原创: 史天 翻译 云技术实践 8月15日 QUIC(Quick U ...
- TableCache设置过小造成MyISAM频繁损坏 与 把table_cache适当调小mysql能更快地工作
来源: 前些天说了一下如何修复损坏的MyISAM表,可惜只会修复并不能脱离被动的境地,只有查明了故障原因才会一劳永逸. 如果数据库服务非正常关闭(比如说进程被杀,服务器断电等等),并且此时恰好正在更新 ...
- 为什么Python中sort方法和sorted函数调用废弃使用cmp参数
Python中sort方法和sorted函数老猿在前面一些章节介绍过,具体语法及含义在此不再展开说明,但老猿在前面学习相关内容时,只使用了简单的案例,对这两个方法的key参数没有深入研究,总以为就是以 ...
- 利用共享内存实现比NCCL更快的集合通信
作者:曹彬 | 旷视 MegEngine 架构师 简介 从 2080Ti 这一代显卡开始,所有的民用游戏卡都取消了 P2P copy,导致训练速度显著的变慢.针对这种情况下的单机多卡训练,MegEng ...
- 精通Web Analytics 2.0 (9) 第七章:失败更快:爆发测试与实验的能量
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第七章:失败更快:爆发测试与实验的能量 欢迎来到实验和测试这个棒极了的世界! 如果Web拥有一个超越所有其他渠道的巨大优势,它就 ...
- 假如 UNION ALL 里面的子句 有 JOIN ,那个执行更快呢
比如: select id, name from table1 where name = 'x' union all select id, name from table2 where name = ...
- 【译】更快的方式实现PHP数组去重
原文:Faster Alternative to PHP’s Array Unique Function 概述 使用PHP的array_unique()函数允许你传递一个数组,然后移除重复的值,返回一 ...
- ubuntu 12.04 LTS 如何使用更快的更新源
装好ubuntu系统后的第一见事就是替换自带的更新源,原因是系统自带的源有些在中国访问不了,可以访问的速度又特别慢.幸好国内的一些公司和大学提供了速度不错的更新源.下面介绍如何使用更快的更新源 方法/ ...
随机推荐
- 2022-04-24:用go语言重写ffmpeg的muxing.c示例。
2022-04-24:用go语言重写ffmpeg的muxing.c示例. 答案2022-04-24: 本程序的大体过程如下: 打开输出文件并写入头部信息. 添加音频和视频流,并为每个流创建 AVCod ...
- 一篇文章告诉你什么是Java内存模型
在上篇 并发编程Bug起源:可见性.有序性和原子性问题,介绍了操作系统为了提示运行速度,做了各种优化,同时也带来数据的并发问题, 定义 在单线程系统中,代码按照顺序从上往下顺序执行,执行不会出现问题. ...
- Typora使用方法
Typora使用方法 常见快捷键 无序列表:- + 空格 有序列表:1. + 空格 引用:> + 空格 标题:ctrl + 数字 表格:ctrl + t 选中一整行:ctrl + l 选中单词: ...
- Java 泛型:理解和应用
概述 泛型是一种将类型参数化的动态机制,使用得到的话,可以从以下的方面提升的你的程序: 安全性:使用泛型可以使代码更加安全可靠,因为泛型提供了编译时的类型检查,使得编译器能够在编译阶段捕捉到类型错误. ...
- Linux系统 2023年5月1号
今天正式进入了LINUX基础核心 下载了centos7.4镜像 和vmware12版本,还未安装vmware和centos镜像7.4
- 自动化测试-基础知识—Bash基础
Bash 在 Bash 中,美元符号 $ 可以用于引用变量或者表达式的值.Bash 中的变量并不需要事先声明,而是在第一次赋值时自动创建.基于这个特性,我们可以通过给变量名加上 $ 的方式来引用它的值 ...
- 2023-05-27:给你一个只包含小写英文字母的字符串 s 。 每一次 操作 ,你可以选择 s 中两个 相邻 的字符,并将它们交换。 请你返回将 s 变成回文串的 最少操作次数 。 注意 ,输入数据
2023-05-27:给你一个只包含小写英文字母的字符串 s . 每一次 操作 ,你可以选择 s 中两个 相邻 的字符,并将它们交换. 请你返回将 s 变成回文串的 最少操作次数 . 注意 ,输入数据 ...
- drf多方式登录接口(手机号、邮箱、验证码)登录
题目 ##### 3 多方式登录接口#### -使用auth的user表扩写 -用户名+密码 -手机号+密码 -邮箱+密码 -签发token逻辑,放在序列化类中写 方式一: serializer.py ...
- 曲线艺术编程 coding curves 第二章 三角函数曲线(TRIG CURVES)
第二章 三角函数曲线(TRIG CURVES) 原作:Keith Peters 原文:https://www.bit-101.com/blog/2022/11/coding-curves/ 译者:池中 ...
- Linux服务器设置虚拟内存
cd /usrsudo mkdir swapcd swapsudo dd if=/dev/zero of=/usr/swap/swapfile bs=1M count=4096du -sh /usr/ ...