洛谷链接&Atcoder 链接

本篇题解为此题较简单做法较少码量,并且码风优良,请放心阅读。

题目简述

给定 \(N\),\(M\) 及含有 \(N\) 个整数的序列 \(A\)。

求 \(1 \sim M\) 中与所有 \(a_i\) 均互质的整数及个数。

思路

首先说一下最开始的想法

直接暴力枚举 \(1 \sim M\) 的数,再分别枚举每个数与 \(a_i\) 是否互质,时间复杂度 \(O(N \times M)\) 左右,一看数据范围直接爆炸提交结果就可想而知了。

TLE \(0\) 分代码如下,因为是暴力就不写注释了:

#include<iostream>
#include<cmath>
using namespace std; int n, m, a[100005], num[100005], ans = 0; int gcd(int x, int y) {
return (y == 0 ? x : gcd(y, x % y));
} int main() {
cin >> n >> m;
for(int i = 1; i <= n; i ++) cin >> a[i];
for(int i = 1; i <= m; i ++) {
bool flag = false;
for(int j = 1; j <= n; j ++)
if(gcd(a[j], i) != 1) { flag = true; break; }
if(!flag) ans ++, num[ans] = i;
}
cout << ans << endl;
for(int i = 1; i <= ans; i ++) cout << num[i] << endl;
return 0;
}

接下来让我们进行一点小优化。

既然对于 \(1 \sim M\) 每个数进行暴力枚举会超时,那么就需要在输入时进行一些标记,经过一些尝试后发现,可以在输入时记录每个数的因数并标记在 \(flag\) 数组中,看到 \(a_i\) 的数据范围后发现可以用桶存。因为 \(a_i\) 的因数会重复,所以在输入后需要另开一个 \(vul\) 存储序列 \(A\) 的所有因数,不必用桶存。

如:

#define MAXN 1000000

void f(int x) {
flag[x] = true;
for(int i = 2; i * i <= x; i ++)
if(x % i == 0) flag[i] = flag[x / i] = true;
return;
} int main() {
cin >> n >> m;
for(int i = 1; i <= n; i ++) { cin >> x; f(x); }
for(int i = 2; i <= MAXN; i ++)
if(flag[i]) vul[++ t] = i;
return 0;
}

接着就可以不那么暴力的枚举了。

首先枚举 \(1 \sim M\) 是一定的,但在第二层循环中仅需枚举当前 \(i\) 是否为 \(vul\) 中因数的倍数,如果是直接跳出当前循环,如果跑了一遍 \(vul\) 发现当前 \(i\) 不是任何 \(vul\) 中因数的倍数,则记录答案至数组 \(num\) 中即可。

经过以上一点小优化,很容易即可写出代码

#include<iostream>
#include<cmath>
using namespace std; #define MAXN 1000000 // 最大值 int n, m, x, t, vul[MAXN + 5], num[MAXN + 5], ans, j;
bool flag[MAXN + 5]; void f(int x) {
flag[x] = true;
for(int i = 2; i * i <= x; i ++) // 遍历 x 求因数
if(x % i == 0) flag[i] = flag[x / i] = true; // 标记 x 的因数
return;
} int main() {
cin >> n >> m;
for(int i = 1; i <= n; i ++) { cin >> x; f(x); } // 输入中处理
for(int i = 2; i <= MAXN; i ++)
if(flag[i]) vul[++ t] = i;
for(int i = 1; i <= m; i ++) {
for(j = 1; j <= t; j ++)
if(i % vul[j] == 0) break; // 不满足情况直接跳出循环
if(j == t + 1) num[++ ans] = i; // 满足情况记录答案
}
cout << ans << endl; // 输出个数
for(int i = 1; i <= ans; i ++) cout << num[i] << endl; // 输出答案
return 0;
}

提交记录

\[\text{The End!!!}
\]

AT_abc215_d 题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

  10. JSOI2016R3 瞎BB题解

    题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...

随机推荐

  1. Java RMI遇到的Connection refused to Host: 127.x.x.x/192.x.x.x/10.x.x.x问题解决方法

    问题故障解决记录 -- Java RMI Connection refused to host: x.x.x.x .... 在学习JavaRMI时,我遇到了以下情况 问题原因:可能大家的host是10 ...

  2. 记录一次 对应用程序日志排查,老是刷出有本地ip登录Sqlserver数据库失败的日志

    在我电脑-计算机管理-事件查看器-windows日志-应用程序里 1秒中就刷很多条 用户sa登录某个数据库失败,客户端ip:192....; 我查看ip发现是本机的ip地址.也就是说有本地的应用程序在 ...

  3. Python爬取数据并保存到csv文件中

    1.数据源 2.Python代码 import requests from lxml import etree import csv url = 'http://211.103.175.222:508 ...

  4. exe应用程序安装为windows服务

    1.使用instsrv.exe和srvany.exe 当你获取到srvany后并决定将某程序作为服务启动后,请先将srvany安装为系统服务,具体的安装方法有很多,这里使用instsrv,语法如下:安 ...

  5. C# wpf 实现Converter定义与使用

    1.  本身的值0, 如何转换为"男" 或"女"呢,可以定义sexConverter继承自IValueConverter即可,代码如下: [ValueConve ...

  6. Docker环境如何配置?使用阿里云OOS一步搞定!

    背景介绍 系统运维管理OOS及扩展程序 系统运维管理OOS(CloudOps Orchestration Service)针对在阿里云ECS实例上部署应用和驱动的复杂性,特别设计了扩展程序,旨在简化用 ...

  7. lxl学长讲课笔记

    lxl 学长讲课笔记 常数种可能性的状态 通过预先处理多种状态的信息,从而快速的转换状态. 经典操作:flip. 分析信息的思路 利用线段树 利用线段树的时候,如何合并两个分支区间的信息,我们需要有如 ...

  8. CF1753

    CF1753 成功因为虚拟机炸了,重新写一遍此文. 都是没有保存的错. A. Make Nonzero Sum 由于 Note that it is not required to minimize ...

  9. 开源一款功能强大的 .NET 消息队列通讯模型框架 Maomi.MQ

    目录 文档说明 导读 快速开始 消息发布者 IMessagePublisher 连接池 消息过期 事务 发送方确认模式 独占模式 消费者 消费者模式 事件模式 分组 消费者模式 消费.重试和补偿 消费 ...

  10. ESM风潮下企业服务的最佳实践探讨

    甄知科技孵化于中国领先的IT咨询服务提供商-上海汉得信息技术股份有限公司,主打产品"燕千云"于2019年正式发布,持续迭代版本至今,燕千云作为企业数字化服务平台,燕千云的愿景和现状 ...