T1004 a*b problem(HDU 7448)

不会。

T1005 小塔的养成游戏之梦(HDU 7449)

不会。

T1009 强攻计策(HDU 7453)

容易发现初始速度是多少对答案没有影响,所以我们默认初始速度为 \(0\)。题意相当于在平面直角坐标系上(横轴为时间,纵轴为速度),有一个目标高度,维护一条尽量接近目标的直线,但斜率只能是 \(-1/0/1\),要支持一段区间目标 \(+1\),求直线下方面积。

将一次区间 \(+1\) 拆成一段后缀 \(+1\) 和一段后缀 \(-1\)。注意到一次后缀 \(+1/-1\) 时至多只有一个位置发生向上/向下翻折,在这个位置前与目标的相对高度 \(-1/+1\),之后相对高度不变,那么此时面积的变化量容易用这个位置表示,我们现在的任务就是快速找到这个位置。

具体而言,设 \(h_i\) 表示直线在 \(x = i\) 处的相对高度,手玩容易发现当区间 \(+1\) 时,我们要找第一个 \(0/-1\),区间 \(-1\) 时,我们要找第一个 \(0/1\)。

现在我们要维护一个数据结构,支持区间 \(+1/-1\),区间找第一个 \(-1/0/1\),考虑分块,块内维护排序数组,修改时整块打标记,散块归并重构,询问时散块暴力,整块二分即可,平衡块长,时间复杂度 \(O(n \sqrt {n \log n})\),常数较小。

Code
#include <iostream>
#include <cmath>
#include <numeric>
#include <algorithm>
#include <vector> using namespace std;
using LL = long long; const int N = 1e5 + 5;
const int Mod = 1e9 + 7, Inv = (Mod + 1) / 2; int n, m;
LL ans; namespace Block {
int len, cnt;
int a[N], b[N], tag[N], bl[N], L[N], R[N]; void build () {
len = sqrt(n) * 0.4;
for (int i = 0; i <= n; ++i) {
bl[i] = i / len + 1;
}
cnt = bl[n];
R[0] = -1;
for (int i = 1; i <= cnt; ++i) {
L[i] = R[i - 1] + 1;
R[i] = min(n, L[i] + len - 1);
}
fill(a, a + n + 1, 0);
iota(b, b + n + 1, 0);
fill(tag, tag + cnt + 1, 0);
} int first_val (int x, int y) {
for (int i = x; i <= R[bl[x]]; ++i) {
if (a[i] == y - tag[bl[x]]) {
return i;
}
}
for (int i = bl[x] + 1; i <= cnt; ++i) {
if (a[b[R[i]]] < y - tag[i] || a[b[L[i]]] > y - tag[i]) continue;
auto cmp = [&](int i, int j) -> bool {
return a[i] < j;
};
auto it = lower_bound(b + L[i], b + R[i] + 1, y - tag[i], cmp);
if (it != b + R[i] + 1 && a[*it] == y - tag[i]) return *it;
}
return n + 1;
} int tmpa[N][2];
int al[2]; void add (int l, int r, int x) {
r = min(r, n);
auto rebuild = [&](int l, int r, int gl, int gr) -> void {
al[0] = 0, al[1] = 0;
for (int i = l; i <= r; ++i) {
int o = b[i] >= gl && b[i] <= gr;
tmpa[++al[o]][o] = b[i];
}
int p = l;
auto cmp = [&](int i, int j) -> bool {
return a[i] < a[j] || a[i] == a[j] && i < j;
};
for (int cur[2] = {1, 1}; cur[0] != al[0] + 1 || cur[1] != al[1] + 1; ) {
if (cur[0] != al[0] + 1 && (cur[1] == al[1] + 1 || cmp(tmpa[cur[0]][0], tmpa[cur[1]][1]))) {
b[p++] = tmpa[cur[0]][0], ++cur[0];
}
else {
b[p++] = tmpa[cur[1]][1], ++cur[1];
}
}
};
if (bl[l] == bl[r]) {
for (int i = l; i <= r; ++i) {
a[i] += x;
}
rebuild(L[bl[l]], R[bl[l]], l, r);
}
else {
for (int i = l; i <= R[bl[l]]; ++i) {
a[i] += x;
}
for (int i = L[bl[r]]; i <= r; ++i) {
a[i] += x;
}
rebuild(L[bl[l]], R[bl[l]], l, R[bl[l]]);
rebuild(L[bl[r]], R[bl[r]], L[bl[r]], r);
for (int i = bl[l] + 1; i <= bl[r] - 1; ++i) {
tag[i] += x;
}
}
}
} void suf_add (int x) {
int pos = min(Block::first_val(x, 0), Block::first_val(x, 1));
ans += max(0, (n - pos) * 2 - 1);
Block::add(x, pos, -1);
} void suf_minus (int x) {
int pos = min(Block::first_val(x, 0), Block::first_val(x, -1));
ans -= max(0, (n - pos) * 2 - 1);
Block::add(x, pos, 1);
} int main () {
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
int T;
cin >> T;
while (T--) {
cin >> n >> m;
Block::build(), ans = 0;
for (int i = 1, l, r; i <= m; ++i) {
cin >> l >> r;
suf_add(l), suf_minus(r);
cout << ans % Mod * Inv % Mod << '\n';
}
}
return 0;
}

T1012 图计算(HDU 7456)

考虑对于每一张图分别维护并查集,我们使用启发式合并,这样可以保证每个结点的 \(fa\) 就是它的最高级祖先,对于每一个结点,为它在所有图中的 \(fa\) 序列哈希即可。

Code
#include <iostream>
#include <vector>
#include <tuple>
#include <unordered_map> using namespace std;
using LL = long long;
using Tp = tuple<int, int, int>; const int N = 5e4 + 5, M = 105; int n, m, d, q; struct Hash_Arr {
int len; struct Hash {
int mod, base, len;
int pw[M], now; void init (int mod_, int base_, int len_) {
mod = mod_, base = base_, now = 0, len = len_;
pw[0] = 1;
for (int i = 1; i <= len; ++i) {
pw[i] = 1ll * pw[i - 1] * base % mod;
}
} void add (int x, int y) { now = (now + 1ll * (mod + y) * pw[x]) % mod; }
} ha[3]; void init (int len_) {
len = len_;
ha[0].init(1000000007, 1000000009, len);
ha[1].init(1000000021, 1000000033, len);
ha[2].init(1000000087, 1000000093, len);
} void add (int x, int y) {
ha[0].add(x, y);
ha[1].add(x, y);
ha[2].add(x, y);
} Tp get_val () { return make_tuple(ha[0].now, ha[1].now, ha[2].now); }
} h[N]; struct tHash {
const int tB = 998244353, tP = tB * tB; int operator() (Tp x) const {
return get<0>(x) + get<1>(x) * tB * get<2>(x) * tP;
}
}; unordered_map<Tp, int, tHash> p;
LL ans; void add (Tp x) {
int v = p[x]++;
ans += v;
} void remove (Tp x) {
int v = --p[x];
ans -= v;
} struct U {
int fa[N], id;
vector<int> vec[N]; void init (int id_) {
id = id_;
fill(vec + 1, vec + n + 1, vector<int>());
for (int i = 1; i <= n; ++i) {
vec[i].push_back(i);
fa[i] = i;
h[i].add(id, i);
}
} void unite (int x, int y) {
x = fa[x], y = fa[y];
if (x == y) return;
if (vec[x].size() < vec[y].size()) swap(x, y);
for (auto v : vec[y]) {
vec[x].push_back(v);
remove(h[v].get_val());
h[v].add(id, x - fa[v]);
add(h[v].get_val());
fa[v] = x;
}
vec[y].clear();
}
} uf[M]; int main () {
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
int T;
cin >> T;
while (T--) {
cin >> n >> m >> d >> q;
for (int i = 1; i <= n; ++i) {
h[i].init(d + 1);
}
for (int i = 1; i <= d + 1; ++i) {
uf[i].init(i);
}
p.clear(), ans = 0;
for (int i = 1; i <= n; ++i) {
add(h[i].get_val());
}
for (int i = 1, u, v; i <= m; ++i) {
cin >> u >> v;
for (int j = 1; j <= d + 1; ++j) {
uf[j].unite(u, v);
}
}
for (int i = 1, u, v, w; i <= q; ++i) {
cin >> u >> v >> w;
uf[w].unite(u, v);
cout << ans << '\n';
}
}
return 0;
}

HDU-ACM 2024 Day2的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. HDU ACM 题目分类

    模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 104 ...

  3. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  4. hdu acm 2082 找单词

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU ACM 1325 / POJ 1308 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU ACM 1134 Game of Connections / 1130 How Many Trees?(卡特兰数)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=1134 [解题背景]这题不会做,自己推公式推了一段时间,将n=3和n=4的情况列出来了,只发现第n项与 ...

  7. HDU ACM Eight

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 解题背景: 看到八数码问题,没有任何的想法,偶然在翻看以前做的题的时候发现解决过类似的一道题,不 ...

  8. HDU ACM 1690 Bus System (SPFA)

    Bus System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU ACM 1224 Free DIY Tour (SPFA)

    Free DIY Tour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  10. HDU ACM 1869 六度分离(Floyd)

    六度分离 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

随机推荐

  1. 【Vue】13 VueRouter Part3 路由守卫

    单页应用中,只存在一个HTML文件,网页的标签,是通过title标签显示的,我们在单页应用中如何修改? JS操作: window.document.title = "标签名称" 也 ...

  2. agnostic在计算机领域的常用翻译 —— location-agnostic deployment option

    关于agnostic的翻译: 例子: NVIDIA OSMO scales workloads across distributed environments. For robotics worklo ...

  3. 服务器上运行 xvbf 时报错 —— Unknown encoder 'libx264'

    解决方法: 使用conda环境(不具体交代) conda install ffmpeg 成功运行:

  4. 大连人工智能计算平台——华为昇腾AI平台——高性能计算HPC——如何在MPI中支持multiprocessing和fork操作——如何在HPC平台上使用pytorch——是否可以通过调度器的提交参数绕过HPC的计费系统

    本文要讨论的就是如何在MPI中支持multiprocessing和fork操作,但是这个问题同时也是如何在HPC平台如何使用pytorch的问题,可以说这两个问题其实是同一个问题,而这个问题的解决过程 ...

  5. 代码随想录Day16

    513.找树左下角的值 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值. 假设二叉树中至少有一个节点. 示例 1: 输入: root = [2,1,3] 输出: 1 示 ...

  6. redis集群之哨兵模式

    redis集群之哨兵模式 1.集群部署 安装配置可参考一下地址: https://www.cnblogs.com/zhoujinyi/p/5569462.html 2.与springboot集成 这里 ...

  7. git push --recurse-submodules = on-demand 递归push

    I have the following project structure: root-project | |-- A | | | |-- C | |-- B A和B是根项目的子模块. C又是项目A ...

  8. 国内IT行业67家外包公司,有多少程序员在里面待过?

    之前写过一篇关于外包公司的文章, <什么是软件外包公司?要不要去外包公司?> 很多粉丝看了后,感觉都在说自己, 存在即合理, 外包大幅度降(可)低(以)了(压)用(榨)人(更)成(多)本( ...

  9. 基于docker搭建单机测试ELK

    说明:本次使用的windows系统,利用vm进行安装虚拟机,安装的只是单测试单机版elk. 一.下载vm 自行官网下载 二.安装centos7系统 自己有现成的镜像跳过,没有自行查找资料完成 三.进行 ...

  10. python的命名风格(下划线篇)

    一个下划线开头的代表模块私有 用from xxx import * 时python会自动屏蔽带下划线的东西,想要取消屏蔽可以用__all__方法,但不建议(不符合规范) 两个下划线开头的代表类私有