Description

Link.

无修改区间求逆序对。

Solution

首先有一个显然的 \(\Theta(N\sqrt{N}\log_{2}N)\) 做法,由于过不了所以我就不废话。

其实有了 \(\Theta(N\sqrt{N}\log_{2}N)\) 的过不去做法,我们就可以根据这个思路然后预处理解决问题。

我们需要处理的信息有:

  1. 散块的逆序对数量

  2. 以块为单位的区间逆序对数量

那么我们需要处理的数组就有以下几个:

  1. previous[i] 表示 \(i\) 到 该块开头的逆序对数量。

  2. suffix[i] 同理。

  3. block[i][j] 表示前 \(i\) 个块中 \(\leq j\) 元素个数。

  4. intervals[i][j] 表示以块为单位的区间 \([i,j]\) 中的逆序对数量。

讲讲预处理方法。

  1. previous[i]suffix[i] 的处理方法都很显然,可以一直扫着然后FWT扫就行。

  2. block[i][j] 可以递推,递推式为 block[i][j]=block[i+1][j]+block[i][j-1]-block[i+1][j-1]+cont(i,j)。其中 cont(i,j) 表示计算对应块的逆序对数。

  3. intervals[i][j] 每次循环到块的开头继承上一个块的贡献即可。

计算贡献的方法很简单,归并即可。mrsrz讲得也挺清楚的,我这里就不再赘述,主要讲讲怎么卡常。

首先我们可以把主函数里的所有循环全部展开,经过实践参数传8的时候跑得比较快。

然后八聚氧先加上,luogu O2也开着。

再其次快读fread快输fwrite,这些都是卡常的标配。

然后就把能拿出来的结构体拿出来,实在不能就不管了。

然后去STL,pair vector能去就去。

然后long long开在正确的地方,不要无脑replace。

函数inline,循环register。虽然可能作用不大但是可以先加上。

然后调块长,经过无数次实践发现取150~170较为优秀。

然后加了过后发现就算rp再好也只有60pts。

然后谷歌搜索硫酸的化学式H₂SO₄,给评测机喂硫酸(idea来自SyadouHayami)。

然后本来交了5页都过不了,这下再交两次就过了。

// 省略八聚氧
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring> using namespace std; const int Maxn = 1e5 + 5;
const int Maxm = 650;
const int each = 160;
int n, m, blocks, Lp[Maxn], Rp[Maxn], isa[Maxn], head[Maxn], tail[Maxn], sorted[Maxn], belong[Maxn], previous[Maxn], suffix[Maxn], block[Maxm][Maxn];
long long intervals[Maxm][Maxn];
struct Holy_Pair
{
int first, second; bool operator < (const Holy_Pair& rhs) const
{
return first < rhs.first;
}
} current[Maxn];
struct Fenwick_Tree
{
int fwt[Maxn]; inline void Modify(int x, int v)
{
for (; x + 5 <= Maxn; x += x & -x) fwt[x] += v;
} inline int Query(int x)
{
int ret = 0;
for (; x; x ^= x & -x) ret += fwt[x];
return ret;
}
} FWT; #define io_e '\0'
#define io_s ' '
#define io_l '\n'
namespace Fast_IO
{
... // 省略快读
} // namespace Fast_IO using Fast_IO::read;
using Fast_IO::write; inline Holy_Pair make_pair(int first, int second)
{
Holy_Pair ret;
ret.first = first;
ret.second = second;
return ret;
} inline int Merge_Vct(int rhs[], int shr[], int szl, int szr)
{
int itl = 1, itr = 1;
int ret = 0, ctr = 1;
while (itl <= szl && itr <= szr)
{
if (rhs[itl] < shr[itr]) ++itl, ++ctr;
else
{
ret += szl - ctr + 1;
++itr;
}
}
return ret + szr - szr;
} inline int Merge_Idx(int st1, int st2, int sz1, int sz2)
{
int ret = 0, id1 = st1 + 1, id2 = st2 + 1;
sz1 += st1, sz2 += st2;
while (id1 <= sz1 && id2 <= sz2)
{
if (sorted[id1] < sorted[id2]) ++id1;
else
{
ret += sz1 - id1 + 1;
++id2;
}
}
return ret;
} inline void Behavior(int l, int r, long long &ans)
{
int itl = 0, itr = 0;
if (belong[l] == belong[r])
{
for (int i = head[belong[l]]; i <= tail[belong[r]]; ++i)
{
if (current[i].second >= l && current[i].second <= r) Rp[++itr] = sorted[i];
else if (current[i].second < l) Lp[++itl] = sorted[i];
}
if (l == head[belong[l]]) ans = previous[r] - Merge_Vct(Lp, Rp, itl, itr);
else ans = previous[r] - previous[l - 1] - Merge_Vct(Lp, Rp, itl, itr);
}
else
{
ans = intervals[belong[l] + 1][belong[r] - 1] + previous[r] + suffix[l];
for (int i = head[belong[l]]; i <= tail[belong[l]]; ++i)
{
if (current[i].second >= l)
{
Lp[++itl] = sorted[i];
ans += block[belong[r] - 1][1] - block[belong[r] - 1][sorted[i]] - block[belong[l]][1] + block[belong[l]][sorted[i]];
}
}
for (int i = head[belong[r]]; i <= tail[belong[r]]; ++i)
{
if (current[i].second <= r)
{
Rp[++itr] = sorted[i];
ans += block[belong[r] - 1][sorted[i] + 1] - block[belong[l]][sorted[i] + 1];
}
}
ans += Merge_Vct(Lp, Rp, itl, itr);
}
write(io_l, ans);
} signed main()
{
read(n, m), blocks = (n - 1) / each + 1;
if (n <= 8)
{
for (int i = 1; i <= n; ++i)
{
read(isa[i]);
current[i] = make_pair(isa[i], i);
}
}
else
{
#pragma unroll 8
for (int i = 1; i <= n; ++i)
{
read(isa[i]);
current[i] = make_pair(isa[i], i);
}
}
if (blocks <= 8)
{
for (int i = 1; i <= blocks; ++i)
{
head[i] = tail[i - 1] + 1;
tail[i] = tail[i - 1] + each;
if (i == blocks) tail[i] = n;
}
}
else
{
#pragma unroll 8
for (int i = 1; i <= blocks; ++i)
{
head[i] = tail[i - 1] + 1;
tail[i] = tail[i - 1] + each;
if (i == blocks) tail[i] = n;
}
}
if (blocks <= 8)
{
for (int i = 1; i <= blocks; ++i)
{
memcpy(block[i], block[i - 1], sizeof(block[0]));
sort(current + head[i], current + 1 + tail[i]);
for (int j = head[i]; j <= tail[i]; ++j)
{
++block[i][isa[j]];
belong[j] = i;
sorted[j] = current[j].first;
}
int satisfy = 0;
for (int j = head[i]; j <= tail[i]; ++j)
{
FWT.Modify(isa[j], 1);
satisfy += FWT.Query(n) - FWT.Query(isa[j]);
previous[j] = satisfy;
}
intervals[i][i] = satisfy;
for (int j = head[i]; j <= tail[i]; ++j)
{
suffix[j] = satisfy;
FWT.Modify(isa[j], -1);
satisfy -= FWT.Query(isa[j] - 1);
}
}
}
else
{
#pragma unroll 8
for (int i = 1; i <= blocks; ++i)
{
memcpy(block[i], block[i - 1], sizeof(block[0]));
sort(current + head[i], current + 1 + tail[i]);
for (int j = head[i]; j <= tail[i]; ++j)
{
++block[i][isa[j]];
belong[j] = i;
sorted[j] = current[j].first;
}
int satisfy = 0;
for (int j = head[i]; j <= tail[i]; ++j)
{
FWT.Modify(isa[j], 1);
satisfy += FWT.Query(n) - FWT.Query(isa[j]);
previous[j] = satisfy;
}
intervals[i][i] = satisfy;
for (int j = head[i]; j <= tail[i]; ++j)
{
suffix[j] = satisfy;
FWT.Modify(isa[j], -1);
satisfy -= FWT.Query(isa[j] - 1);
}
}
}
if (blocks <= 8)
{
for (int dis = 1; dis <= blocks; ++dis)
{
for (int i = n - 1; i; --i) block[dis][i] += block[dis][i + 1];
for (int l = 1, r = dis + 1; r <= blocks + 1; ++l, ++r)
intervals[l][r] = intervals[l + 1][r] + intervals[l][r - 1] - intervals[l + 1][r - 1] +
Merge_Idx(head[l] - 1, head[r] - 1, tail[l] - head[l] + 1, tail[r] - head[r] + 1);
}
}
else
{
#pragma unroll 8
for (int dis = 1; dis <= blocks; ++dis)
{
for (int i = n - 1; i; --i) block[dis][i] += block[dis][i + 1];
for (int l = 1, r = dis + 1; r <= blocks + 1; ++l, ++r)
intervals[l][r] = intervals[l + 1][r] + intervals[l][r - 1] - intervals[l + 1][r - 1] +
Merge_Idx(head[l] - 1, head[r] - 1, tail[l] - head[l] + 1, tail[r] - head[r] + 1);
}
} if (m <= 8)
{
long long lastans = 0;
for (int i = 0; i < m; ++i)
{
long long l, r;
read(l, r);
l ^= lastans;
r ^= lastans;
Behavior(l, r, lastans);
}
}
else
{
long long lastans = 0;
#pragma unroll 8
for (int i = 0; i < m; ++i)
{
long long l, r;
read(l, r);
l ^= lastans;
r ^= lastans;
Behavior(l, r, lastans);
}
}
return 0;
}

Solution -「洛谷 P5046」「YunoOI 2019 模拟赛」Yuno loves sqrt technology I的更多相关文章

  1. 洛谷 P5046 [Ynoi2019 模拟赛] Yuno loves sqrt technology I(分块+卡常)

    洛谷题面传送门 zszz,lxl 出的 DS 都是卡常题( 首先由于此题强制在线,因此考虑分块,我们那么待查询区间 \([l,r]\) 可以很自然地被分为三个部分: 左散块 中间的整块 右散块 那么这 ...

  2. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  3. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  4. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  5. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  6. 「 洛谷 」P2768 珍珠项链

    珍珠项链 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 题目来源 「 洛谷 」P2768 珍珠项链 ...

  7. 「 洛谷 」P4539 [SCOI2006]zh_tree

    小兔的话 推荐 小兔的CSDN [SCOI2006]zh_tree 题目限制 内存限制:250.00MB 时间限制:1.00s 标准输入输出 题目知识点 思维 动态规划 \(dp\) 区间\(dp\) ...

  8. 「 洛谷 」P2151 [SDOI2009]HH去散步

    小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...

  9. 「CSP-S模拟赛」2019第四场

    「CSP-S模拟赛」2019第四场 T1 「JOI 2014 Final」JOI 徽章 题目 考场思考(正解) T2 「JOI 2015 Final」分蛋糕 2 题目 考场思考(正解) T3 「CQO ...

  10. #10471. 「2020-10-02 提高模拟赛」灌溉 (water)

    题面:#10471. 「2020-10-02 提高模拟赛」灌溉 (water) 假设只有一组询问,我们可以用二分求解:二分最大距离是多少,然后找到深度最大的结点,并且把它的\(k\)倍祖先的一整子树删 ...

随机推荐

  1. R 语言中的高级图像处理包

    最新的 magick 包是为能够在 R 中更现代化.简单化高质量图像处理而进行的一次努力.该包封装了目前最强大的开源图片处理库 ImageMagick STL . ImageMagick 库具有大量功 ...

  2. The shell

    The shell shell是什么? 如今的计算机有着多种多样的交互接口让我们可以进行指令的的输入,从炫酷的图像用户界面(GUI),语音输入甚至是 AR/VR 都已经无处不在. 这些交互接口可以覆盖 ...

  3. CentOS7环境编译python3.9版本pjsua

    环境:CentOS 7.6_x64 Python版本 :3.9.12 pjsip版本:2.13 一.背景描述 pjsip地址:https://www.pjsip.org/ GitHub地址:https ...

  4. Python爬虫(二):写一个爬取壁纸网站图片的爬虫(图片下载,词频统计,思路)

    好家伙,写爬虫   代码: import requests import re import os from collections import Counter import xlwt # 创建Ex ...

  5. C标准库 操作文件

    C标准库 操作文件 数据持久化的两种方法:文件和数据库 文本文件和二进制文件 举个例子,写C++的代码,源代码为文本文件.编译出来的可执行文件(.exe)文件是二进制文件 文本文件 以文本的编码(AS ...

  6. 2023-07-17:给定一个数组arr,长度为n, 再给定一个数字k,表示一定要将arr划分成k个集合, 每个数字只能进一个集合。 返回每个集合内部的平均值都累加起来最小的值。 平均值向下取整。 1

    2023-07-17:给定一个数组arr,长度为n, 再给定一个数字k,表示一定要将arr划分成k个集合, 每个数字只能进一个集合. 返回每个集合内部的平均值都累加起来最小的值. 平均值向下取整. 1 ...

  7. MAUI Blazor项目中如何添加一个返回服务,并支持安卓返回键

    前言 MAUI Blazor中,安卓项目的返回键体验很不好,只能如同浏览器一样返回上一页.但很多时候,我们想让他返回的上一页,不一定就是实际上的上一页.而且也想让返回键去支持一些事件,按下返回键触发, ...

  8. 万字长文浅析配置对MySQL服务器的影响

    有很多的服务器选项会影响这MySQL服务器的性能,比如内存中临时表的大小.排序缓冲区等.有些针对特定存储引擎(如InnoDB)的选项,也会对查询优化很有用. 调整服务器的配置从某种程度来说是一个影响全 ...

  9. 类WPF跨平台模仿TIM

    类WPF跨平台模仿TIM Avalonia是什么? Avalonia 是一个功能强大的框架,使开发人员能够使用 .NET 创建跨平台应用程序.它使用自己的渲染引擎来绘制UI控件,确保在各种平台上保持一 ...

  10. 三万字盘点Spring 9大核心基础功能

    大家好,我是三友~~ 今天来跟大家聊一聊Spring的9大核心基础功能. 其实最近有小伙伴私信问我怎么不写文章了,催更来了 其实我不是不写,而是一直在写这篇文章,只不过令我没想到的是,从前期的选题.准 ...