第八场

CodeForces - 1288A. Deadline

Example

input

3
1 1
4 5
5 11

output

YES
YES
NO

Note

In the first test case, Adilbek decides not to optimize the program at all, since \(d≤n\).

In the second test case, Adilbek can spend \(1\) day optimizing the program and it will run \(⌈\frac52⌉=3\) days. In total, he will spend \(4\) days and will fit in the limit.

In the third test case, it's impossible to fit in the limit. For example, if Adilbek will optimize the program \(2\) days, it'll still work \(⌈\frac{11}{2+1}⌉=4\) days.

题意:

\(Adilbek\) 有一个编程任务,总工期为 \(n\) 天,直接暴力完成需要 \(d\) 天。但他可以选择花 \(x\) 天进行优化,然后再花 \(⌈\frac{d}{x + 1}⌉\) 天运行。如果可以在工期内完成则输出 \(YES\) 不然输出 \(NO\)。

思路:

如果暴力完成天数小于工期则不需要去特地优化,不然的话需要进行优化但优化天数是不能超过 工期数(即 \(x < n\))。

详解看代码更好理解。

#include<bits/stdc++.h>
#define ms(a,b) memset(a,b,sizeof a)
using namespace std;
typedef long long ll;
const int N = 1e5 + 100;
ll _, n, d, a[N], i, j;
void solve() {
cin >> n >> d;
if (d <= n) {
cout << "YES" << endl;
return;
}
for (int x = 1; x < d && x <= n; ++x) {
if ((x + ceil((float)d / (x + 1))) <= n) {//必须要先提高精度(float化)不然在除的时候会导致错误,如4/3 = 1.333 = 1发生错误
cout << "YES" << endl;
return;
}
}
cout << "NO" << endl;
} int main() {
//freopen("in.txt", "r", stdin);
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> _; while (_--) solve();
}

CodeForces - 1288B. Yet Another Meme Problem

input

3
1 11
4 2
191 31415926

output

1
0
1337

Note

There is only one suitable pair in the first test case: \(a=1, b=9 (1+9+1⋅9=19)\).

题目内部图片:

题意:

给定\(A,B\) 求$ 1≤a≤A, 1≤b≤B1$ 有多少对(a,b)使\(a⋅b+a+b=conc(a,b)\) 成立。

思路:

仔细分解一下所给的公式:

\[a * b + a + b = conc(a,b)\\
a * b + a + b = a * 10^{|num|} + b \\
| num | 是b的十进制表示长度。\\
a * b + a = a * 10^{|num|}\\
b + 1 = 10^{|num|}\\
因此,b总是看起来像99…99。 因此,答案是a *(| num + 1 | -1)。
\]
#include<bits/stdc++.h>
#define ms(a,b) memset(a,b,sizeof a)
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
const int N = 1e5 + 100;
ll _, n, m, a[N], i, j; void solve() {
ll A, B; cin >> A >> B;
ll weinum = 0, i = B;
bool flag = true;
while (i) {
weinum++;
i /= 10;
}
i = B;
while (i) {
if (i % 10 != 9) {
flag = false;
break;
}
i /= 10;
}
if (flag)cout << A * weinum << endl;
else cout << A * (weinum - 1) << endl;
} int main() {
//freopen("in.txt", "r", stdin);
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> _; while (_--) solve();
}
#python
for t in range(int(input())):
a, b = map(int, input().split())
print(a * (len(str(b + 1)) - 1))

1288C - Two Arrays

组合数学问题。

让我们考虑以下顺序:

\[a_1,a_2,…,a_m,b_m,b_{m-1},…,b_1。
\]

它的长度为$ 2m \(的序列以降序排列,其中每个序列的每个元素都是\) 1 \(和\) n $之间的整数。

我们可以通过简单的组合来找到此类序列的数量-它是与重复结合在一起的。 所以答案是

\[\begin{pmatrix}n+2m−1\\\\2m\end{pmatrix} = (n+2m−1)!(2m)!/(n−1)!
\]
#python
from math import factorial as fact
mod = 10**9 + 7 def C(n, k):
return fact(n) // (fact(k) * fact(n - k)) n, m = map(int, input().split())
print(C(n + 2*m - 1, 2*m) % mod)

1288D - Minimax Problem

思路:来自CF官网

我们将使用二进制搜索来解决该问题。 假设我们想知道答案是否不少于x。

每个数组都可以由一个m位掩码表示,其中如果数组的第i个元素不少于x,则第i个位为1;如果第i个元素小于x,则第i个位为0。 如果要验证答案不小于x,则必须选择两个数组,使它们的掩码的按位或为\(2^m-1\)。

检查所有成对的数组太慢。 取而代之的是,我们可以将相同掩码表示的数组视为相等-这样,我们将不会有超过\(2^m\)个不同的数组,并且可以迭代\(4^m\)对。 总体而言,该解决方案在\(O(logA(4^m + nm))\)下工作。

C++代码实现:

#include<bits/stdc++.h>
using namespace std;
int n, m;
vector<vector<int> > a;
int a1, a2; bool can(int mid)
{
vector<int> msk(1 << m, -1);
for(int i = 0; i < n; i++)
{
int cur = 0;
for(int j = 0; j < m; j++)
if(a[i][j] >= mid)
cur ^= (1 << j);
msk[cur] = i;
}
if(msk[(1 << m) - 1] != -1)
{
a1 = a2 = msk[(1 << m) - 1];
return true;
}
for(int i = 0; i < (1 << m); i++)
for(int j = 0; j < (1 << m); j++)
if(msk[i] != -1 && msk[j] != -1 && (i | j) == (1 << m) - 1)
{
a1 = msk[i];
a2 = msk[j];
return true;
}
return false;
} int main()
{
scanf("%d %d", &n, &m);
a.resize(n, vector<int>(m));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
scanf("%d", &a[i][j]);
int lf = 0;
int rg = int(1e9) + 43;
while(rg - lf > 1)
{
int m = (lf + rg) / 2;
if(can(m))
lf = m;
else
rg = m;
}
assert(can(lf));
printf("%d %d\n", a1 + 1, a2 + 1);
}

Educational Codeforces Round 80 A - D题题解(又是卡很久的一场比赛)的更多相关文章

  1. Educational Codeforces Round 80 A-E简要题解

    contest链接:https://codeforces.com/contest/1288 A. Deadline 题意:略 思路:根据题意 x + [d/(x+1)] 需要找到一个x使得上式小于等于 ...

  2. Educational Codeforces Round 80 (Rated for Div. 2)部分题解

    A. Deadline 题目链接 题目大意 给你\(n,d\)两个数,问是否存在\(x\)使得\(x+\frac{d}{x+1}\leq n\),其中\(\frac{d}{x+1}\)向上取整. 解题 ...

  3. Educational Codeforces Round 37-F.SUM and REPLACE题解

    一.题目 二.题目链接 http://codeforces.com/contest/920/problem/F 三.题意 给定$N$个范围在$[1, 1e6)$的数字和$M$个操作.操作有两种类型: ...

  4. Educational Codeforces Round 80 (Rated for Div. 2)

    A. Deadline 题目链接:https://codeforces.com/contest/1288/problem/A 题意: 给你一个 N 和 D,问是否存在一个 X , 使得 $x+\lce ...

  5. Educational Codeforces Round 80 C. Two Arrays(组合数快速取模)

    You are given two integers nn and mm . Calculate the number of pairs of arrays (a,b)(a,b) such that: ...

  6. Educational Codeforces Round 80 (Rated for Div. 2)D E

    D枚举子集 题:https://codeforces.com/contest/1288/problem/D题意:给定n个序列,每个序列m个数,求第i个和第j个序列组成b序列,b序列=max(a[i][ ...

  7. Educational Codeforces Round 37-G.List Of Integers题解

    一.题目 二.题目链接 http://codeforces.com/contest/920/problem/G 三.题意 给定一个$t$,表示有t次查询.每次查询给定一个$x$, $p$, $k$,需 ...

  8. Educational Codeforces Round 23 A-F 补题

    A Treasure Hunt 注意负数和0的特殊处理.. 水题.. 然而又被Hack了 吗的智障 #include<bits/stdc++.h> using namespace std; ...

  9. Educational Codeforces Round 12 B C题、

    B. Shopping 题意:n个顾客,每个顾客要买m个物品,商场总共有k个物品,看hint就只知道pos(x)怎么算了,对于每一个Aij在k个物品中找到Aij的位置.然后加上这个位置对于的数值,然后 ...

  10. Educational Codeforces Round 10 A B题、

    A. Gabriel and Caterpillar 题意: 就是说  一个小孩子去观察毛毛虫从 h1的地方爬到h2的地方.毛毛虫从10点爬到22点.每小时爬的距离是a, 晚上22点到第二天早上10点 ...

随机推荐

  1. 京东广告研发近期入选国际顶会文章系列导读——CIKM 2023篇

    近年来,放眼业界广告推荐领域的算法获得了长足的发展,从几篇奠定基础的序列学习.大规模图学习.在线学习&增强学习.多模态推荐问题等起步,业内算法不断迭代发展并在学术和工业场景上取得不错的应用. ...

  2. 制作交互式页面动画 | animate+javaweb

    目前是做得这样的作业,有想法改一改.

  3. 【Android】实现连接SQLite并尝试进行增删改查

  4. VS Code安装教程

    一.下载 1.官网 下载地址:https://code.visualstudio.com/Download 2.下载 根据自己电脑型号下载,此处以Windows为例. 二.安装 1.下载完成后,直接点 ...

  5. 前端学习-html-1

    html常用标签 h1-h6:标题 p:段落 strong/em: 对文本进行设置    strong--加粗,强调作用  比如:商品价格    em--斜体,对文本内容修饰成斜体 hr/br: hr ...

  6. Redis本地安装以及使用(详细教程)

    Redis 安装 Windows 下载安装 Redis默认端口:6379 整个过程如下: 1.下载连接 https://github.com/tporadowski/redis/releases Re ...

  7. 华企盾DSC为平面设计公司提供数据防泄漏解决方案

    华企盾DSC作为一款专业的数据防泄漏解决方案,为平面设计公司提供多方位而有效的安全保障.以下是该解决方案为平面设计公司所带来的主要优势: 图纸加密保护: 超安全的加密技术确保设计公司的图纸和敏感信息得 ...

  8. 断言可Cookie管理器

    断言可以判断预期结果和实际结果是否一致 可以辅助判断脚本的运行结果是否正确 cookie管理器 记录用户的cookie信息 可以自动记录cookie,也可以使用用户自定义的cookie

  9. Unix IPC

    本文主要是摘抄 APUE 中 IPC 部分的内容 IPC(Inter Process Communication)进程间通信,是指在进程之间进行通信的一种方式,本文将简要介绍一下在 Unix 中存在的 ...

  10. Reactor 简介

    官方的介绍如下: Reactor is a fully non-blocking reactive programming foundation for the JVM, with efficient ...