Link

简要题意:在 \(n \times m\) 的方格表中填入一些不超过 \(2^k-1\) 的数。考虑所有从左上角到右下角的最短路径,要求其中满足路径上数异或和为 \(0\) 的路径只有给定的 \(S\) 一条,问是否有解。

首先,变换看问题的角度:给定 \(n,m,S\),则 \(k\) 应该存在一个最小值,使得问题有解(或总是无解),所以这其实是一个组合最值问题。那么考虑两个方面:证明和构造。

证明部分,我们要尽可能的增大 \(k\),也就是增大所需的二进制位数。那么,考虑 \(S\) 的一个拐角,如图,红线表示 \(S\),蓝线表示一个调整。

这里拐角指的是红线的拐弯处斜向相邻的这个格,即图中蓝线唯一不同与红线的格。

将红线换为蓝线之后,只改变了两个格,那么由于蓝线不能异或和为 \(0\),所以这两个格至少有一位二进制不同。

这样的调整可以在若干个地方进行,设为 \(t\) 个,第 \(i\) 个调整会使路径的异或和改变 \(v_i\)。那么,不能有若干个 \(v_i\) 的异或和为 \(0\),即 \(v_i\) 是一个线性无关组。由于 \(v_i\) 定义在 \(k\) 位二进制数上,所以 \(t \le k\)。

但是,并不是每个拐角都可以调整。准确地说,不是所有拐角都可以一起调整。请看下图:

图中标出了三个拐角,但是显然不能同时做 \(1,2\) 的调整,也不能同时做 \(1,3\) 的调整。再思考一下可以发现,其实只有这样的一种情况是特殊的,也就是有一段经过两格的,连续的若干个两格只取一侧。

如此就可以算出 \(k\) 的下界,它其实就是一条路径能够经过的拐角数目的最大值,只是对于连续的两格比较特殊。

至于构造,思考到这里应该不太难了。方案如下:(想象一个人在表格中走,Ta要做一些决策)

  1. 对于一段长度大于等于 \(3\) 的直走,取新的一位,在这一段两端各添一个 \(1\)。这样可以使得走到这一段开头后必须走这一段结尾。

  2. 对于一些长度为 \(2\) 的直走,不妨设第一个 \(2\) 是竖向的,那么给每一段竖向的分配一个二进制位,在这两个格上添 \(1\)。然后取消两端由上一条添的位。

似乎说的不太清楚?上图。

在第二条规则下,有一些“必经之路”会被挡住,所以必须要经过所有安排的 \(1\)。

容易验证这个构造确实取到了前面证明的最值。

AGC 传统,思路难,代码易。请看 Code:

#include<bits/stdc++.h>
using namespace std;
int T,n,m,k,cnt,x,y,lstx,lsty;
//x,y跟着路径S跑
//lstx,lsty表示上一个选中的拐角
char s[65];
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&m,&k);
scanf("%s",s+1);
cnt=0;x=y=lstx=lsty=1;
for(int i=1;i<n+m-2;i++){
if(s[i]=='D')x++;else y++;
if(s[i]!=s[i+1]){
if(s[i]=='D'&&lstx<=x-1&&lsty<=y+1)
cnt++,lstx=x-1,lsty=y+1;
if(s[i]=='R'&&lstx<=x+1&&lsty<=y-1)
cnt++,lstx=x+1,lsty=y-1;
}
}
printf(cnt<=k?"Yes\n":"No\n");
}
return 0;
}

Solution - AGC060B的更多相关文章

  1. Enterprise Solution 3.1 企业应用开发框架 .NET ERP/CRM/MIS 开发框架,C/S架构,SQL Server + ORM(LLBL Gen Pro) + Infragistics WinForms

    行业:基于数据库的制造行业管理软件,包含ERP.MRP.CRM.MIS.MES等企业管理软件 数据库平台:SQL Server 2005或以上 系统架构:C/S 开发技术 序号 领域 技术 1 数据库 ...

  2. Enterprise Solution 开源项目资源汇总 Visual Studio Online 源代码托管 企业管理软件开发框架

    Enterprise Solution 是一套管理软件开发框架,在这个框架基础上开发出一套企业资源计划系统Enterprise Edition. 现将Enterprise Solution开发过程中遇 ...

  3. Windows 10 部署Enterprise Solution 5.5

    Windows 10正式版发布以后,新操作系统带来了许多的变化.现在新购买的电脑安装的系统应该是Windows 10.与当初用户不习惯Windows 7,购买新电脑后第一个想做的事情就是重装成XP,估 ...

  4. Enterprise Solution 企业资源计划管理软件 C/S架构,支持64位系统,企业全面应用集成,制造业信息化

    Enterprise Solution是一套完整的企业资源计划系统,功能符合众多制造业客户要求.系统以.NET Framework技术作为开发架构,完善的功能可有效地帮助企业进行运营策划,减低成本,如 ...

  5. Dynamics CRM 2015-超大Solution导入问题

    我们在将比较大的solution导入CRM的时候,经常会遇到超时的问题,这是因为CRM的本身的优化限制导致的,那么如何解决呢? 官方已经有了解决方案了. 在浏览完两种解决方法之后,我们要知道的是: 1 ...

  6. WATERHAMMER: A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION

    开启阅读模式 WATERHAMMER A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION Waterhammer is an impact load that is ...

  7. Codility NumberSolitaire Solution

    1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...

  8. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  9. The Solution of UESTC 2016 Summer Training #1 Div.2 Problem C

    Link http://acm.hust.edu.cn/vjudge/contest/121539#problem/C Description standard input/output After ...

  10. The Solution of UESTC 2016 Summer Training #1 Div.2 Problem B

    Link http://acm.hust.edu.cn/vjudge/contest/121539#problem/B Description standard input/output Althou ...

随机推荐

  1. 【JVM】关于JVM,你需要知道这些!!

    写在前面 最近,一直有小伙伴让我整理下关于JVM的知识,经过十几天的收集与整理,初版算是整理出来了.希望对大家有所帮助. JDK 是什么? JDK 是用于支持 Java 程序开发的最小环境. Java ...

  2. Sealos 开源初创公司 Trending 全球 TOP50,中国第二!

    今年,Runa Capital (鲁纳资本) 评选出了 2023 年增长最快的 50 家开源创业公司,Sealos 压轴登场,总共有两家中国公司上榜,Sealos 排名第二. Runa Capital ...

  3. Linux中JMeter的使用

    Linux中JMeter的使用 Linux版本JMeter安装 # 1.下载.安装JMeter 如果有安装包直接上传即可 wget -c https://archive.apache.org/dist ...

  4. #树形dp,直径#51nod 1812 树的双直径

    题目 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点), 使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有1个点则链长视为0). \(n\leq 4*1 ...

  5. 《Spring 测试指南》:JPA、MockMvc 和 @SpringBootTest 详解

    测试 Spring 提供了一组测试工具,可以轻松地测试 Spring 应用程序的各个组件,包括控制器.服务.存储库和其他组件.它具有丰富的测试注释.实用程序类和其他功能,以帮助进行单元测试.集成测试等 ...

  6. 异步、多线程、Java爬取某网站图片

    一.网页图片爬取类 package com.yhyl.utils; import org.jsoup.Jsoup; import org.jsoup.nodes.Document; import or ...

  7. HarmonyOS 自定义页面请求与前端页面调试

      一.自定义页面请求响应 Web组件支持在应用拦截到页面请求后自定义响应请求能力.开发者通过onInterceptRequest()接口来实现自定义资源请求响应 .自定义请求能力可以用于开发者自定义 ...

  8. Java多线程之Callable和Future

    Java多线程之Callable和Future 本篇说明的是Callable和Future,它俩很有意思的,一个产生结果,一个拿到结果. Callable接口类似于Runnable,从名字就可以看出来 ...

  9. 局部区块多个报表 TAB 页切换及局部区块的参数查询

    在企业的业务系统中,如何从纷繁复杂的数据中抽丝剥茧看到关键数据信息呢?一个重要的途径就是将企业和各部门运营中关键的 KPI 集中在一起显示,同时尽量省去在企业的各个业务系统中分别查找数据. 下面是我近 ...

  10. Flutter开发技巧集锦

    flutter中单例的写法 class AccountManager { factory AccountManager() => _instance ??= AccountManager._() ...