CF82D Two out of Three
题目描述
Vasya has recently developed a new algorithm to optimize the reception of customer flow and he considered the following problem.
Let the queue to the cashier contain n n n people, at that each of them is characterized by a positive integer ai a_{i} ai — that is the time needed to work with this customer. What is special about this very cashier is that it can serve two customers simultaneously. However, if two customers need ai a_{i} ai and aj a_{j} aj of time to be served, the time needed to work with both of them customers is equal to max(ai,aj) max(a_{i},a_{j}) max(ai,aj) . Please note that working with customers is an uninterruptable process, and therefore, if two people simultaneously come to the cashier, it means that they begin to be served simultaneously, and will both finish simultaneously (it is possible that one of them will have to wait).
Vasya used in his algorithm an ingenious heuristic — as long as the queue has more than one person waiting, then some two people of the first three standing in front of the queue are sent simultaneously. If the queue has only one customer number i i i , then he goes to the cashier, and is served within ai a_{i} ai of time. Note that the total number of phases of serving a customer will always be equal to ⌈n/2⌉ ⌈n/2⌉ ⌈n/2⌉ .
Vasya thinks that this method will help to cope with the queues we all hate. That's why he asked you to work out a program that will determine the minimum time during which the whole queue will be served using this algorithm.
输入格式
The first line of the input file contains a single number n n n ( 1<=n<=1000 1<=n<=1000 1<=n<=1000 ), which is the number of people in the sequence. The second line contains space-separated integers a1,a2,...,an a_{1},a_{2},...,a_{n} a1,a2,...,an ( 1<=ai<=106 1<=a_{i}<=10^{6} 1<=ai<=106 ). The people are numbered starting from the cashier to the end of the queue.
输出格式
Print on the first line a single number — the minimum time needed to process all n n n people. Then on ⌈n/2⌉ ⌈n/2⌉ ⌈n/2⌉ lines print the order in which customers will be served. Each line (probably, except for the last one) must contain two numbers separated by a space — the numbers of customers who will be served at the current stage of processing. If n n n is odd, then the last line must contain a single number — the number of the last served customer in the queue. The customers are numbered starting from 1 1 1 .
题意翻译
一队顾客排在一位收银员前面。他采取这样一个策略:每次,假如队伍有至少两人,就会从前面的前三人(如果有)中选取两位一起收银,所花费的时间为这两人单独收银所需时间的最大值。如果只有两人,那么一起收银;如果只有一人,那么单独收银。请问所需的总时间最少是多少?
输入输出样例
4
1 2 3 4
6
1 2
3 4
5
2 4 3 1 4
8
1 3
2 5
4
考虑dp
发现不好搞,在不同的情况下选择不同的数会造成不同的影响
考虑状态的设计,发现对于不同的情况,不一样的其实是当前3个数和选到了第几个数
可以在状态中记录一下目前3个数,发现只用记录前面留下的即可
设f[i][j]表示选到了第i个数,前面留下的是第j个数时的最优解
然后就没什么了
转移应该是很显而易见的
code
//¼ÓÓÍ
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int f[1001][1001],n,a[1001],out[1001][1001][3];
inline ll read()
{
char c=getchar();ll a=0,b=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')b=-1;
for(;c>='0'&&c<='9';c=getchar())a=a*10+c-48;
return a*b;
}
inline void az(int i,int j,int x,int y,int z){out[i][j][0]=x;out[i][j][1]=y;out[i][j][2]=z;}
void prout(int x,int y)
{
if(y==0)return;
prout(x-1,out[x][y][2]);
if(out[x][y][0]<=n)
{
cout<<out[x][y][0]<<' ';
}
if(out[x][y][1]<=n)
{
cout<<out[x][y][1]<<' ';
}
cout<<endl;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
n=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
}
memset(f,0x3f,sizeof(f));
f[1][1]=max(a[2],a[3]);f[1][2]=max(a[1],a[3]);f[1][3]=max(a[1],a[2]);
az(1,1,2,3,0);
az(1,2,1,3,0);
az(1,3,1,2,0);
int m=(n&1)?n/2+1:n/2;
for(int i=2;i<=m;i++)
{
int x=i<<1,y=i<<1|1;
for(int j=1;j<x;j++)
{
if(f[i][x]>f[i-1][j]+max(a[j],a[y]))
{
f[i][x]=f[i-1][j]+max(a[j],a[y]);
az(i,x,j,y,j);
}
if(f[i][y]>f[i-1][j]+max(a[j],a[x]))
{
f[i][y]=f[i-1][j]+max(a[j],a[x]);
az(i,y,j,x,j);
}
if(f[i][j]>f[i-1][j]+max(a[x],a[y]))
{
f[i][j]=f[i-1][j]+max(a[x],a[y]);
az(i,j,x,y,j);
}
}
}
cout<<f[m][n+1]<<endl;
prout(m,n+1);
return 0;
}
随机推荐
- 【Oracle】使用PL/SQL实现冒泡排序
[Oracle]使用PL/SQL实现冒泡排序 一般来说,SQL要排序的话直接使用order by即可 不一般来说,就是瞎搞,正好也可以巩固自己的数据结构基础 存储包内容如下 规范: create or ...
- 【WALT】update_task_demand() 代码详解
目录 [WALT]update_task_demand() 代码详解 代码展示 代码逻辑 用于判断是否进入新窗口的标志位 ⑴ 不累加任务运行时间的条件判断 ⑵ 仍在旧窗口中 ⑶ 进入新窗口 ⑷ 返回值 ...
- zabbix 修改模板中单个主机的触发器
参考文档:zabbix 修改模板中单个主机的触发器 在主机的 Triggers,克隆后修改,再disable原来的触发器.
- echarts-for-react:实时更新数据
解决方案 echarts 注解 详细链接 https://echarts.apache.org/zh/api.html#echartsInstance.setOption 参考链接 https://b ...
- Git: remote: The project you were looking for could not be found.
解决方案 最简单的是在电脑的用户凭证中修改,改为正确的结果. 特殊情况 既只对改项目配置,不影响全局 命令如下: 克隆 git clone http://username:password@xxx.c ...
- 如何在 Windows10 下运行 Tensorflow 的目标检测?
前言 看过很多博主通过 Object Detection 实现了一些皮卡丘捕捉,二维码检测等诸多特定项的目标检测.而我跟着他们的案例来运行的时候,不是 Tensorflow 版本冲突,就是缺少什么包, ...
- Cilium系列-16-CiliumNetworkPolicy 实战演练
系列文章 Cilium 系列文章 前言 今天我们进入 Cilium 安全相关主题, 基于 Cilium 官方的<星球大战> Demo 做详细的 CiliumNetworkPolicy 实战 ...
- vivo 场景下的 H5无障碍适配实践
作者:vivo 互联网前端团队- Zhang Li.Dai Wenkuan 随着信息无障碍的建设越来越受重视,开发人员在无障碍适配中也遇到了越来越多的挑战.本文是笔者在vivo开发H5项目做无障碍适配 ...
- 【路由器】OpenWrt 简介和安装
目录 简介 来源 介绍 安装 一般安装流程 固件搜索下载 参考资料 简介 来源 2002 年底 Linksys 公司推出 WRT-54G,采用了 Linux 取代了原来的 vXworks 系统.迫于 ...
- 京东获得JD商品详情 API 返回值说明
item_get-获得JD商品详情 API测试 onebound.jd.item_get 公共参数 名称 类型 必须 描述 key String 是 调用key(必须以GET方式拼接在URL中) ...