分类模型评估中,通过各类损失(loss)函数的分析,可以衡量模型预测结果与真实值之间的差异。
不同的损失函数可用于不同类型的分类问题,以便更好地评估模型的性能。

本篇将介绍分类模型评估中常用的几种损失计算方法。

1. 汉明损失

Hamming loss汉明损失)是一种衡量分类模型预测错误率的指标。
它直接衡量了模型预测错误的样本比例,因此更直观地反映出模型的预测精度,
而且,它对不平衡数据比较敏感,也适用于多分类的问题,不仅限于二分类问题。

1.1. 计算公式

\(L(y, \hat{y}) = \frac{1}{n * m} \sum_{i=0}^{n-1} \sum_{j=0}^{m - 1} 1(\hat{y}_{i,j} \not= y_{i,j})\)
其中,\(n\)是样本数量,\(m\)是标签数量,\(y_{i,j}\)是样本\(i\)的第\(j\)个标签的真实值,\(\hat{y}_{i,j}\)是对应的预测值,
\(1(x)\) 是指示函数。

1.2. 使用示例

from sklearn.metrics import hamming_loss
import numpy as np n = 100
y_true = np.random.randint(1, 10, n)
y_pred = np.random.randint(1, 10, n) s = hamming_loss(y_true, y_pred)
print("hamming loss:{}".format(s)) # 运行结果
hamming loss:0.8

2. 铰链损失

Hinge loss铰链损失)常用于“最大间隔”分类,其最著名的应用是作为支持向量机(SVM)的目标函数。
Hinge loss主要用于二分类问题,并且通常与特定的算法(如SVM)结合使用。

2.1. 计算公式

\(L(y, w) = \frac{1}{n} \sum_{i=0}^{n-1} \max\left\{1 - w_i y_i, 0\right\}\)
其中,\(n\)是样本数量,\(y_i\)是真实值, \(w_i\)是相应的预测决策(由 decision_function 方法输出)。

2.2. 使用示例

from sklearn.metrics import hinge_loss
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
import numpy as np n = 100
X = np.random.randint(0, 2, size=(n, 1))
y = np.random.randint(0, 2, n) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1) reg = LinearSVC(dual="auto")
reg.fit(X_train, y_train) y_pred_decision = reg.decision_function(X_test) s = hinge_loss(y_test, y_pred_decision)
print("hinge loss:{}".format(s)) # 运行结果
hinge loss:1.0136184446302712

上面的示例中,首先构建一个支持向量机的训练模型和随机的样本数据。
最后在测试集上计算hinge loss

3. 对数损失

对数损失log loss)通过考虑模型预测的概率与实际标签的对数误差来评估模型的性能。
它特别关注模型对于每个样本的预测概率的准确性,对于错误的分类,Log loss会给予较大的惩罚。

对数损失的值越小,表示模型的预测概率越接近实际标签,模型的性能越好。

3.1. 计算公式

\(LL = - \frac{1}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{K-1} y_{i,k} \log p_{i,k}\)
其中,\(N\)是样本数量,\(K\)是分类标签的数量,
\(y_{i,k}\)是第\(i\)个样本在标签\(k\)上的真实值,\(p_{i,k}\)是对应的概率估计。

3.2. 使用示例

from sklearn.metrics import log_loss
import numpy as np n = 100
k = 10
y_true = np.random.randint(0, k, n)
y_prob = np.random.rand(n, k) # 这一步转换后,
# y_prob 每一行的和都为1
for i in range(len(y_prob)):
y_prob[i, :] = y_prob[i, :] / np.sum(y_prob[i, :]) s = log_loss(y_true, y_prob)
print("log loss:{}".format(s)) # 运行结果
log loss:2.6982702715125466

上面的示例中,\(n\)是样本数量,\(k\)是标签数量。

4. 零一损失

零一损失zero-one loss)非常直观,直接对应着分类判断错误的个数,能很清晰地反映出模型预测错误的比例。
它计算简单,易于理解和实现,对于二分类问题特别直观,但是对于非凸性质不太适用。

4.1. 计算公式

\(L(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n-1} 1(\hat{y}_i \not= y_i)\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(\hat{y_i}\)是预测值,
\(1(x)\) 是指示函数。

4.2. 使用示例

from sklearn.metrics import zero_one_loss
import numpy as np n = 100
y_true = np.random.randint(1, 10, n)
y_pred = np.random.randint(1, 10, n) s1 = zero_one_loss(y_true, y_pred)
s2 = zero_one_loss(y_true, y_pred, normalize=False)
print("zero-one loss比率:{}\nzero-one loss数量:{}".format(s1, s2)) # 运行结果
zero-one loss比率:0.89
zero-one loss数量:89

5. Brier 分数损失

Brier 分数损失Brier score loss)关注模型预测的概率与实际结果之间的差异。
与只关注预测类别的其他指标不同,它衡量了预测概率的可靠性;
与一些仅适用于二分类问题的评估指标相比,Brier score loss可以应用于多类别分类问题。

它的数值越小,表示模型的概率预测越准确,具有很好的解释性。

5.1. 计算公式

\(BS = \frac{1}{n} \sum_{i=0}^{n - 1}(y_i - p_i)^2\)
其中,\(n\)是样本数量,\(y_i\)是真实值,\(p_i\)是预测概率估计的均方误差。

5.2. 使用示例

from sklearn.metrics import brier_score_loss
import numpy as np n = 100
y_true = np.random.randint(0, 2, n)
y_prob = np.random.rand(n) s = brier_score_loss(y_true, y_prob)
print("brier score loss:{}".format(s)) # 运行结果
brier score loss:0.3141953858083935

示例中计算损失用的模拟数据中,y_true表示真实值,y_prob表示预测概率的均方误差。

6. 总结

本篇归纳总结了分类模型中关于损失函数的一些使用方式:

  • 汉明损失,Hamming loss
  • 铰链损失,Hinge loss
  • 对数损失,log loss
  • 零一损失,zero one loss
  • Brier 分数损失,Brier score loss

【scikit-learn基础】--『回归模型评估』之损失分析的更多相关文章

  1. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  2. 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价

    python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...

  3. Poisson回归模型

    Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊 ...

  4. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  5. 逻辑回归模型(Logistic Regression, LR)基础

    逻辑回归模型(Logistic Regression, LR)基础   逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...

  6. 『高性能模型』轻量级网络ShuffleNet_v1及v2

    项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Netwo ...

  7. 回归模型效果评估系列1-QQ图

    (erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y ...

  8. 『高性能模型』HetConv: HeterogeneousKernel-BasedConvolutionsforDeepCNNs

    论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离 ...

  9. 『高性能模型』轻量级网络MobileNet_v2

    论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks 前文链接:『高性能模型』深度可分离卷积和MobileNet_v1 一.Mobil ...

  10. 20165308『网络对抗技术』Exp5 MSF基础应用

    20165308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...

随机推荐

  1. 一个非常轻量级的 Web API Demo

    一个非常轻量级的 Web API Demo,代码量很少,实现了方法拦截器,token校验,异常拦截器,缓存 创建项目:如果选择Web API,项目中东西会比较多,这里选择Empty,把下面的Web A ...

  2. Docker 和 VMware不兼容问题

    直接贴解决方案: 当想使用 VMware bcdedit /set hypervisorlaunchtype off 当想使用 Docker 时 bcdedit /set hypervisorlaun ...

  3. debian更新openssh 9.6

    先更新一下,然后安装libssl-dev zlib1g-dev依赖文件 apt update apt install build-essential apt-get install -y libssl ...

  4. <vue 基础知识 7、循环遍历>

    代码结构 一.     01-v-for遍历数组 1.效果 2.代码 01-v-for遍历数组.html <!DOCTYPE html> <html lang="en&qu ...

  5. mouseenter和mouseover区别

    mouseenter事件 当鼠标移动到元素上时,就会触发mouseenter事件. 类似mouseover,它们两者之间的差别是:mouseover鼠标经过自身盒子会触发,经过子盒子还会触发.mous ...

  6. vue如何实现v-model

  7. Mathpix:屏幕截图 ➡ latex 公式,一键转换

    安利一天能免费使用 10 次且好用的工具 Mathpix.

  8. 幻兽帕鲁 Palworld 私有服务器一键部署教程

    <幻兽帕鲁>(日语:パルワールド,英语:Palworld) 是由日本开发商 Pocket Pair 推出的一款动作冒险生存游戏.游戏设定在一个由类似动物的生物 "帕鲁" ...

  9. Numa以及其他内存参数等对Oracle的影响

    Numa以及其他内存参数等对Oracle的影响 背景知识: Numa的理解 Numa 分一致性内存访问结构 主要是对应UMA 一致性内存访问而言的. 在最初一个服务器只有一个CPU的场景下, 都是UM ...

  10. OpenGauss 单机版安装

    OpenGauss 单机版安装 银河麒麟的前置事项 yum -y install libaio-devel flex bison ncurses-devel glibc-devel patch rea ...