LeetCode300.最长递增子序列
LeetCode300.最长递增子序列
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
- 输入:nums = [10,9,2,5,3,7,101,18]
- 输出:4
- 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
- 输入:nums = [0,1,0,3,2,3]
- 输出:4
示例 3:
- 输入:nums = [7,7,7,7,7,7,7]
- 输出:1
提示:
- 1 <= nums.length <= 2500
- -104 <= nums[i] <= 104
动态规划思路讲解
- 我之前也讲过一篇最长上升子序列的文章,也可以去看看,本文基于线性dp:最长上升子序列 - Tomorrowland_D - 博客园 (cnblogs.com))来详细讲解这道题的思路
状态变量以及其含义
- 我们设置状态变量dp[i],表示
以nums[i]为结尾的最长上升子序列的长度 - 我们举个例子,以示例1为例,我们来推导一下为什么可以用
dp[i]来表示以nums[i]为结尾的最长上升子序列 - nums数组: [10,9,2,5,3,7,101,18]
- 以10结尾的最长上升子序为:[10]
- 以9为结尾的最长上升子序列为:[9]
- 以2为结尾的最长上升子序列为:[2]
- 以5为结尾的最长上升子序列为:[2,5]
- 以3为结尾的最长上升子序列为:[2,3]
- 以7为结尾的最长上升子序列为:[2,3,7]
- 以101为结尾的最长上升子序列为:[2,3,7,101]
- 以18为结尾的最长上升子序列为:[2,3,7,18]
- 由上面的分析可知,以101为结尾的最长上升子序列是我们要求的最终的结果,并且这个结果的状态可以由前面的状态推出,因此我们设立
dp[i]这个状态变量表示以nums[i]为结尾的最长上升子序列。
递推公式:
我们可以设立两个指针
i,j来进行操作,i指针来遍历nums的每一个元素,j指针来遍历nums[i]之前的所有元素,由于我们要找出最大的上升子序列,所以说每个元素我们都要找到nums中在这个元素之前的所有比这个元素要小的元素,这样才能尽可能的构成最大的递增子序列。所以说我们使用i,j指针来遍历字符串。
当
nums[i]>nums[j]时,意味着我们当前元素大于之前的一个元素,这两个元素之间可以构成一个递增子序列,所以说我们可能要进行更新dp[i],为什么是可能呢?因为我们dp[i]的值可能比dp[j]+1(dp[j]+1的意思就是前j个元素构成的递增序列,再加上num[i]这个值的长度)这个值更大,所以说我们得取一个最大的值。因此,递推公式为:
vector<int> dp(nums.size(),1);
int ans=1;
for(int i=1;i<nums.size();i++){
for(int j=0;j<i;j++){
if(nums[i]>nums[j]) dp[i]=max(dp[i],dp[j]+1);
}
ans=max(ans,dp[i]);
}
遍历顺序
- 由于dp[i]是要由它之前的元素dp[j]来推导的,因此遍历顺序明显是从前向后遍历
如何初始化?
- 首先,我们将dp[i]中的所有值全都初始化为1,因为每个元素至少都有一个递增子序列(也就是它本身构成的子序列)
- 然后,依据我们的递推公式从前向后进行初始化操作即可。
举例验证dp数组
- nums数组: [10,9,2,5,3,7,101,18]
- 以10结尾的最长上升子序为:[10]
- 以9为结尾的最长上升子序列为:[9]
- 以2为结尾的最长上升子序列为:[2]
- 以5为结尾的最长上升子序列为:[2,5]
- 以3为结尾的最长上升子序列为:[2,3]
- 以7为结尾的最长上升子序列为:[2,3,7]
- 以101为结尾的最长上升子序列为:[2,3,7,101]
- 以18为结尾的最长上升子序列为:[2,3,7,18]
- 这个例子也说明了我们的dp数组是正确的
代码实现
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp(nums.size(),1);
//这个初始值为1,因为至少都有长度为1的递增子序列
int ans=1;
for(int i=1;i<nums.size();i++){
for(int j=0;j<i;j++){
if(nums[i]>nums[j]) dp[i]=max(dp[i],dp[j]+1);
}
ans=max(ans,dp[i]);
}
return ans;
}
};
LeetCode300.最长递增子序列的更多相关文章
- LeetCode--300. 最长递增子序列
题目:给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...
- leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence
Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 【动态规划】拦截导弹_dilworth定理_最长递增子序列
问题 K: [动态规划]拦截导弹 时间限制: 1 Sec 内存限制: 256 MB提交: 39 解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...
随机推荐
- Android Verified Boot 2.0 AVB详解(基于Android P)
原文地址:https://android.googlesource.com/platform/external/avb/+/master/ 译文地址:https://blog.csdn.net/sha ...
- openfoam 修改 src 库经验记录
遇到一个问题,要把 sprayFoam 求解器的蒸发模型修改为自定义蒸发模型. sprayFoam 求解器本身没有实现蒸发模型,而是调用 $FOAM_SRC/lagrangian/intermedia ...
- webdav协议及我的笔记方案(私有部署)
背景 用markdown用于文章写作,有几年时间了,不是很喜欢折腾,主要就是在电脑上写,用的笔记软件就是typora.由于里面有很多工作相关的,以及个人资料相关的(包含了各种账号.密码啥的),所以不敢 ...
- 屏幕分辨率基础概念PX,PT,DP,DPR,DPI说明
屏幕分辨率基础概念说明 缩写 全称 说明 PX Device Pixels 设备像素,指设备的物理像素 PX CSS Pixels CSS像素,指CSS样式代码中使用的逻辑像素 DOT Dot 点,屏 ...
- ps -ef | grep xxx 解释
上述内容为:命令拆解: ps:将某个进程显示出来-A 显示所有程序.-e 此参数的效果和指定"A"参数相同.-f 显示UID,PPIP,C与STIME栏位.grep命令是查找中间的 ...
- Flink 内存配置学习总结
设置进程内存(Process Memory) Apache Flink通过严格控制其各种组件的内存使用,在JVM之上提供高效的工作负载. 配置总内存(Total Memory) Flink JVM进程 ...
- Sysbench 使用总结
Sysbench使用总结 实践环境 CentOS 7.8 Sysbench 1.0.20 下载地址:https://github.com/akopytov/sysbench/archive/refs/ ...
- QT 的 ModelView
QApplication a(argc, argv); QDirModel model; //QDirModel, 问文件目录树 QTreeView tree; QListView l ...
- php环境,性能优化
根据宝塔的推荐进行参数修改 我的是8G内存,修改成4G内存 下面是备份:修改前的 ; Start a new pool named 'www'.; the variable $pool can be ...
- python 抽卡
模拟抽奖 import random def main(): print('weilcome to box game') print(' 1.once\n','2.sixty times\n','3. ...