notonlysuccess大神的线段树完全版
在大神的网站进不去的时候可以过来看看,另外道客巴巴有个排版比较好的文档,外观派可以去看看http://www.doc88.com/p-2728103209174.html
很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章了,觉得当时的代码风格实在是太丑了,很多线段树的初学者可能就是看着这篇文章来练习的,如果不小心被我培养出了这么糟糕的风格,实在是过意不去,正好过几天又要给集训队讲解线段树,所以决定把这些题目重新写一遍,顺便把近年我接触到的一些新题更新上去~;并且学习了splay等更高级的数据结构后对线段树的体会有更深了一层,线段树的写法也就比以前飘逸,简洁且方便多了.
在代码前先介绍一些我的线段树风格:
maxn是题目给的最大区间,而节点数要开4倍,确切的来说节点数要开大于maxn的最小2x的两倍
lson和rson分辨表示结点的左儿子和右儿子,由于每次传参数的时候都固定是这几个变量,所以可以用预定于比较方便的表示
以前的写法是另外开两个个数组记录每个结点所表示的区间,其实这个区间不必保存,一边算一边传下去就行,只需要写函数的时候多两个参数,结合lson和rson的预定义可以很方便
PushUP(int rt)是把当前结点的信息更新到父结点
PushDown(int rt)是把当前结点的信息更新给儿子结点
rt表示当前子树的根(root),也就是当前所在的结点
整理这些题目后我觉得线段树的题目整体上可以分成以下四个部分:
单点更新:最最基础的线段树,只更新叶子节点,然后把信息用PushUP(int r)这个函数更新上来
hdu1166 敌兵布阵
http://acm.hdu.edu.cn/showproblem.php?pid=1166
题意:O(-1)
思路:O(-1)
线段树功能:update:单点增减 query:区间求和
#include <cstdio>
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 55555;
int sum[maxn<<2];
void PushUP(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void build(int l,int r,int rt) {
if (l == r) {
scanf("%d",&sum[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUP(rt);
}
void update(int p,int add,int l,int r,int rt) {
if (l == r) {
sum[rt] += add;
return ;
}
int m = (l + r) >> 1;
if (p <= m) update(p , add , lson);
else update(p , add , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret += query(L , R , lson);
if (R > m) ret += query(L , R , rson);
return ret;
}
int main() {
int T , n;
scanf("%d",&T);
for (int cas = 1 ; cas <= T ; cas ++) {
printf("Case %d:\n",cas);
scanf("%d",&n);
build(1 , n , 1);
char op[10];
while (scanf("%s",op)) {
if (op[0] == 'E') break;
int a , b;
scanf("%d%d",&a,&b);
if (op[0] == 'Q') printf("%d\n",query(a , b , 1 , n , 1));
else if (op[0] == 'S') update(a , -b , 1 , n , 1);
else update(a , b , 1 , n , 1);
}
}
return 0;
}
hdu1754 I Hate It
http://acm.hdu.edu.cn/showproblem.php?pid=1754
题意:O(-1)
思路:O(-1)
线段树功能:update:单点替换 query:区间最值
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 222222;
int MAX[maxn<<2];
void PushUP(int rt) {
MAX[rt] = max(MAX[rt<<1] , MAX[rt<<1|1]);
}
void build(int l,int r,int rt) {
if (l == r) {
scanf("%d",&MAX[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUP(rt);
}
void update(int p,int sc,int l,int r,int rt) {
if (l == r) {
MAX[rt] = sc;
return ;
}
int m = (l + r) >> 1;
if (p <= m) update(p , sc , lson);
else update(p , sc , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return MAX[rt];
}
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret = max(ret , query(L , R , lson));
if (R > m) ret = max(ret , query(L , R , rson));
return ret;
}
int main() {
int n , m;
while (~scanf("%d%d",&n,&m)) {
build(1 , n , 1);
while (m --) {
char op[2];
int a , b;
scanf("%s%d%d",op,&a,&b);
if (op[0] == 'Q') printf("%d\n",query(a , b , 1 , n , 1));
else update(a , b , 1 , n , 1);
}
}
return 0;
}
hdu1394 Minimum Inversion Number
http://acm.hdu.edu.cn/showproblem.php?pid=1394
题意:求Inversion后的最小逆序数
思路:用O(nlogn)复杂度求出最初逆序数后,就可以用O(1)的复杂度分别递推出其他解
线段树功能:update:单点增减 query:区间求和
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 5555;
int sum[maxn<<2];
void PushUP(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void build(int l,int r,int rt) {
sum[rt] = 0;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
void update(int p,int l,int r,int rt) {
if (l == r) {
sum[rt] ++;
return ;
}
int m = (l + r) >> 1;
if (p <= m) update(p , lson);
else update(p , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret += query(L , R , lson);
if (R > m) ret += query(L , R , rson);
return ret;
}
int x[maxn];
int main() {
int n;
while (~scanf("%d",&n)) {
build(0 , n - 1 , 1);
int sum = 0;
for (int i = 0 ; i < n ; i ++) {
scanf("%d",&x[i]);
sum += query(x[i] , n - 1 , 0 , n - 1 , 1);
update(x[i] , 0 , n - 1 , 1);
}
int ret = sum;
for (int i = 0 ; i < n ; i ++) {
sum += n - x[i] - x[i] - 1;
ret = min(ret , sum);
}
printf("%d\n",ret);
}
return 0;
}
成段更新
(通常这对初学者来说是一道坎),需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候
hdu1698 Just a Hook
http://acm.hdu.edu.cn/showproblem.php?pid=1698
题意:O(-1)
思路:O(-1)
线段树功能:update:成段替换 (由于只query一次总区间,所以可以直接输出1结点的信息
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 111111;
int h , w , n;
int col[maxn<<2];
int sum[maxn<<2];
void PushUp(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m) {
if (col[rt]) {
col[rt<<1] = col[rt<<1|1] = col[rt];
sum[rt<<1] = (m - (m >> 1)) * col[rt];
sum[rt<<1|1] = (m >> 1) * col[rt];
col[rt] = 0;
}
}
void build(int l,int r,int rt) {
col[rt] = 0;
sum[rt] = 1;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
col[rt] = c;
sum[rt] = c * (r - l + 1);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (R > m) update(L , R , c , rson);
PushUp(rt);
}
int main() {
int T , n , m;
scanf("%d",&T);
for (int cas = 1 ; cas <= T ; cas ++) {
scanf("%d%d",&n,&m);
build(1 , n , 1);
while (m --) {
int a , b , c;
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , 1 , n , 1);
}
printf("Case %d: The total value of the hook is %d.\n",cas , sum[1]);
}
return 0;
}
notonlysuccess大神的线段树完全版的更多相关文章
- 【转】线段树完全版~by NotOnlySuccess
线段树完全版 ~by NotOnlySuccess 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章了,觉 ...
- 【转】 线段树完全版 ~by NotOnlySuccess
载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章 ...
- LOJ2980 THUSC2017大魔法师(线段树+矩阵乘法)
线段树每个节点维护(A,B,C,len)向量,操作即是将其乘上一个矩阵. #include<iostream> #include<cstdio> #include<cma ...
- BZOJ4530 BJOI2014大融合(线段树合并+并查集+dfs序)
易知所求的是两棵子树大小的乘积.先建出最后所得到的树,求出dfs序和子树大小.之后考虑如何在动态加边过程中维护子树大小.这个可以用树剖比较简单的实现,但还有一种更快更优美的做法就是线段树合并.对每个点 ...
- 2019.01.14 bzoj4530: [Bjoi2014]大融合(线段树合并)
传送门 线段树合并菜题. 题意简述:nnn个点,支持连边以及查询一个点所在连通块中经过这个点的路径条数,保证这张图时刻为森林. 思路: 先建出所有操作完之后的树统计出dfsdfsdfs序 注意有可能是 ...
- 【洛谷4219】[BJOI2014]大融合(线段树分治)
题目: 洛谷4219 分析: 很明显,查询的是删掉某条边后两端点所在连通块大小的乘积. 有加边和删边,想到LCT.但是我不会用LCT查连通块大小啊.果断弃了 有加边和删边,还跟连通性有关,于是开始yy ...
- 杭电 HDU ACM 2795 Billboard(线段树伪装版)
Billboard Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- [THUSC2017]大魔法师:线段树
分析 在线段树上用\(4 \times 4\)的矩阵打标记. 代码 #include <bits/stdc++.h> #define rin(i,a,b) for(register int ...
- nyoj--1185--最大最小值(线段树)
最大最小值 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给出N个整数,执行M次询问. 对于每次询问,首先输入三个整数C.L.R: 如果C等于1,输出第L个数到第R个数 ...
- Buy Tickets(线段树单点更新,逆向思维)
题目大意:有n个的排队,每一个人都有一个val来对应,每一个后来人都会插入当前队伍的某一个位置pos.要求把队伍最后的状态输出. 个人心得:哈哈,用链表写了下,果不其然超时了,后面转念一想要用静态数组 ...
随机推荐
- UOS 开启 VisualStudio 远程调试 .NET 应用之旅
本文记录的是在 Windows 系统里面,使用 VisualStudio 2022 远程调试运行在 UOS 里面 dotnet 应用的配置方法 本文写于 2024.03.19 如果你阅读本文的时间距离 ...
- dotnet 警惕使用 StackTrace 加获取方法标记 Attribute 特性在 Release 下被内联
大家都知道,在 dotnet 里的 Debug 下和 Release 下的一个最大的不同是在 Release 下开启了代码优化.启用代码优化,将会对生成的 IL 代码进行优化,同时优化后的 IL 也会 ...
- 实验1 在MAX10 FPGA上实现组合逻辑
实验1 在MAX10 FPGA上实现组合逻辑 实验前的准备工作:参照讲义步骤安装Quartus,Modelsim和System Builder.阅读材料:1)推荐的文件组织形式:2)Verilog 1 ...
- 羽夏闲谈—— Kdenlive flatpak 版本解决语音识别找不到 pip3
简述 Kdenlive是在 Linux 上一款比较优秀的剪辑软件,功能比较强大.操作相对容易,能够满足日常剪辑的需要. 解决方案 找到对应的安装目录/var/lib/flatpak/app/o ...
- sqli-labs-master 第二,三,四关
第二关: 判断注入类型:http://192.168.65.130/sqli-labs-master/Less-2/?id=1 --+ 原因:$sql="SELECT * FROM user ...
- nginx与location规则
========================================================================= 2018年3月28日 记录: location = ...
- Mybatis Plus的@TableId标签
@TableId1.如果数据库字段设成user_id在初始生成后,在代码中会变成userId,不会设置成主键使用**@TableId(value="user_id",type = ...
- grads读取nc格式文件
一.通常: 1.grads读取grd和ctl:open ****.ctl 2.执行gs脚本:run ****.gs d命令,display展示数据,常用来显示变量,比如rh,rain等 q命令, ...
- synchronized原理-字节码分析、对象内存结构、锁升级过程、Monitor
本文分析的问题: synchronized 字节码文件分析之 monitorenter.monitorexit 指令 为什么任何一个Java对象都可以成为一把锁? 对象的内存结构 锁升级过程 Moni ...
- IPv6 — 综合组网技术
目录 文章目录 目录 前文列表 IPv4v6 综合组网技术(转换机制) 双栈策略 隧道策略 前文列表 <IPv6 - 网际协议第 6 版> <IPv6 - 地址格式与寻址模式> ...