[SDOI2018] 旧试题
推狮子的部分
=\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_{x|i}\sum_{y|j}\sum_{z|k}\epsilon(\gcd(x,y))\epsilon(\gcd(y,z))\epsilon(\gcd(x,z))\\
=\sum_{i=1}^A\sum_{x|i}\sum_{j=1}^B\sum_{y|j}\sum_{k=1}^C\sum_{z|k}\epsilon(\gcd(x,y))\epsilon(\gcd(y,z))\epsilon(\gcd(x,z))\\
=\sum_{x=1}^A\lfloor\frac{A}{x}\rfloor\sum_{y=1}^B\lfloor\frac{B}{y}\rfloor\sum_{z=1}^C\lfloor\frac{C}{z}\rfloor\epsilon(\gcd(x,y))\epsilon(\gcd(y,z))\epsilon(\gcd(x,z))\\
=\sum_{x=1}^A\lfloor\frac{A}{x}\rfloor\sum_{y=1}^B\lfloor\frac{B}{y}\rfloor\sum_{z=1}^C\lfloor\frac{C}{z}\rfloor\sum_{d|x,d|y}\mu(d)\sum_{p|y,p|z}\mu(p)\sum_{q|x,q|z}\mu(q)\\
=\sum_{d=1}^{\min(A,B)}\mu(d)\sum_{p=1}^{\min(B,C)}\mu(p)\sum_{q=1}^{\min(A,C)}\mu(q)\sum_{d|x,q|x}^A\lfloor\frac{A}{x}\rfloor\sum_{d|y,p|y}^B\lfloor\frac{B}{y}\rfloor\sum_{p|z,q|z}^C\lfloor\frac{C}{z}\rfloor\\
=\sum_{d=1}^{\min(A,B)}\mu(d)\sum_{p=1}^{\min(B,C)}\mu(p)\sum_{q=1}^{\min(A,C)}\mu(q)\sum_{lcm(d,q)|x}^A\lfloor\frac{A}{x}\rfloor\sum_{lcm(d,p)|y}^B\lfloor\frac{B}{y}\rfloor\sum_{lcm(p,q)|z}^C\lfloor\frac{C}{z}\rfloor\\
\text{define } f(n,t)=\sum_{t|x}\lfloor\frac{n}{x}\rfloor ,N=\max(A,B,C)\\
\cdots=\sum_{d=1}^N\mu(d)\sum_{p=1}^N\mu(p)\sum_{q=1}^N\mu(q)f(A,lcm(d,q))f(B,lcm(d,p))f(C,lcm(p,q))\\
\]
计算答案
其中\(f(n,t)\)可以\(O(n\log n)\)预处理。
考虑对\(T\)个点连边建图,\(u\)、\(v\)之间有边当且仅当\(\mu(u)\not=0,\mu(v)\not=0,lcm(a,b)\not>T\)。那么图中的每个三元环都能算入答案,这里的三元环还包括只有俩点的和只有单点的。
对于包含三个点的\(<d,p,q>\)的贡献为
(f(A,lcm(d,q))f(B,lcm(d,p))f(C,lcm(p,q))+\\
f(A,lcm(d,q))f(B,lcm(p,q))f(C,lcm(d,p))+\\
f(A,lcm(d,p))f(B,lcm(d,q))f(C,lcm(p,q))+\\
f(A,lcm(d,p))f(B,lcm(p,q))f(C,lcm(d,q))+\\
f(A,lcm(p,q))f(B,lcm(d,p))f(C,lcm(d,q))+\\
f(A,lcm(p,q))f(B,lcm(d,q))f(C,lcm(d,p)))
\]
对于包含两个、一个的环同理。统计三元环的方法参照不常用的黑科技——「三元环」。
参考实现
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int mod=1e9+7;
//[SDOI2018]旧试题
int pr[N],cnt;
int mu[N],bk[N],deg[N];
long long fa[N],fb[N],fc[N];
bool vis[N];
struct Node {int u,v,w;};
struct Edge {int ver,len;};
Node ech[N*300];
vector<Edge> e[N];
int solve(int a,int b,int c) {
long long ans=0;
int n=max(a,max(b,c)),m=0;
for(int i=1; i<=n; ++i) {
deg[i]=fa[i]=fb[i]=fc[i]=0;
e[i].clear();
}
for(int i=1; i<=n; ++i) {
for(int x=i; x<=n; x+=i) {
fa[i]+=a/x,fb[i]+=b/x,fc[i]+=c/x;
}
}
for(int i=1; i<=a&&i<=b&&i<=c; ++i) {
if(mu[i]) ans+=mu[i]*mu[i]*mu[i]*fa[i]*fb[i]*fc[i];
}
for(int g=1; g<=n; ++g) {
for(int i=1; i*g<=n; ++i) if(mu[i*g]) {
for(int j=i+1; 1LL*i*j*g<=n; ++j) if(mu[j*g]&&__gcd(i,j)==1) {
int u=i*g,v=j*g,w=i*j*g;
deg[u]++,deg[v]++,ech[++m]=(Node){u,v,w};
ans+=mu[u]*mu[u]*mu[v]*(fa[u]*fb[w]*fc[w]+fa[w]*fb[u]*fc[w]+fa[w]*fb[w]*fc[u]);
ans+=mu[u]*mu[v]*mu[v]*(fa[v]*fb[w]*fc[w]+fa[w]*fb[v]*fc[w]+fa[w]*fb[w]*fc[v]);
}
}
}
for(int i=1; i<=m; ++i) {
if(deg[ech[i].u]<deg[ech[i].v]||(deg[ech[i].u]==deg[ech[i].v]&&ech[i].u<ech[i].v))
swap(ech[i].u,ech[i].v);
e[ech[i].u].push_back((Edge){ech[i].v,ech[i].w});
}
#define veit vector<Edge>::iterator
for(int i=1; i<=n; ++i) if(mu[i]) {
for(veit j=e[i].begin(); j!=e[i].end(); ++j) bk[j->ver]=j->len;
for(veit j=e[i].begin(); j!=e[i].end(); ++j) {
for(veit k=e[j->ver].begin(); k!=e[j->ver].end(); ++k) {
if(!bk[k->ver]) continue;
ans+=mu[i]*mu[j->ver]*mu[k->ver]*(
fa[j->len]*fb[k->len]*fc[bk[k->ver]]+fa[j->len]*fb[bk[k->ver]]*fc[k->len]+fa[k->len]*fb[j->len]*fc[bk[k->ver]]+
fa[k->len]*fb[bk[k->ver]]*fc[j->len]+fa[bk[k->ver]]*fb[j->len]*fc[k->len]+fa[bk[k->ver]]*fb[k->len]*fc[j->len]
);
}
}
for(veit j=e[i].begin(); j!=e[i].end(); ++j) bk[j->ver]=0;
}
return (ans%mod+mod)%mod;
}
void sieve() {
mu[1]=1;
for(int i=2; i<N; ++i) {
if(!vis[i]) mu[pr[++cnt]=i]=-1;
for(int j=1; j<=cnt&&i*pr[j]<N; ++j) {
vis[i*pr[j]]=1;
if(i%pr[j]==0) break;
else mu[i*pr[j]]=-mu[i];
}
}
}
int main() {
sieve();
int T,a,b,c;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&a,&b,&c);
printf("%d\n",solve(a,b,c));
}
return 0;
}
[SDOI2018] 旧试题的更多相关文章
- 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
[BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...
- P4619 [SDOI2018]旧试题
题目 P4619 [SDOI2018]旧试题 Ps:山东的题目可真(du)好(liu),思维+码量的神仙题 推式 求\(\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^Cd(ij ...
- BZOJ5332: [Sdoi2018]旧试题(莫比乌斯反演)
时光匆匆,转眼间又是一年寒暑…… 这是小 Q 同学第二次参加省队选拔赛. 今年,小 Q 痛定思痛,不再冒险偷取试题,而是通过练习旧 试题提升个人实力.可是旧试题太多了,小 Q 没日没夜地做题,却看不到 ...
- sdoi2018旧试题 证明
- Bzoj5332: [Sdoi2018]旧试题
国际惯例的题面首先我们进行一些相对显然的数学变化.解释一下第二行的那个变形,如果一个数是ijk的因数,那么它一定能被分解成三部分分别是i,j,k的因数.我们钦定一个质数只能在三部分的一个中出现.如果一 ...
- LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数
传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...
- [bzoj 5332][SDOI2018]旧试题
传送门 Description \[ \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^Cd(ijk) (\mathrm{mod\:} 10^9+7) \] 其中 \(d(ijk) ...
- loj#2565. 「SDOI2018」旧试题(反演 三元环计数)
题意 题目链接 Sol 神仙反演题.在洛谷上疯狂被卡常 Orz shadowice #include<bits/stdc++.h> #define Pair pair<int, in ...
- LOJ2476. 「2018 集训队互测 Day 3」蒜头的奖杯 & LOJ2565. 「SDOI2018」旧试题(莫比乌斯反演)
题目链接 LOJ2476:https://loj.ac/problem/2476 LOJ2565:https://loj.ac/problem/2565 题解 参考照搬了 wxh 的博客. 为了方便, ...
随机推荐
- ubuntu安装时系统分区设置
1. 创建主分区:主分区,用于存放系统 20G 主分区 空间起始位置 Ext4日志文件系统 / 2. 创建swap分区:逻辑分区.大小设置为电脑内存大小,2G: 2048MB ...
- Asp.net并发请求导致的数据重复插入问题
前段时间工作中,有客户反应了系统中某类待办重复出现两次的情况.我核实了数据之后,分析认为是并发请求下导致的数据不一致性问题,并做了重现.其实这并不是一个需要频繁调用的功能,但是客户连续点击了两次,导致 ...
- Linux中的官方源、镜像源汇总
转载一篇文章,很有用 (一).企业站 搜狐: http://mirrors.sohu.com/ 网易: http://mirrors.163.com/ 阿里云: http://mirrors.aliy ...
- 分布式缓存技术之Redis_03分布式redis
目录 1. Redis集群 集群作用 主从复制 集群安装配置 集群数据同步及原理 2. Redis哨兵机制 master选举 哨兵sentinel的作用 哨兵sentinel之间的相互感知 maste ...
- 极简科普 1:什么是 VOIP
VoIP 的全称是 Voice over Internet Protocol.简单说,就是用过 IP 网络进行即时的语音/视频通信.注意,这里只强调了在传输过程中有使用 IP 网络,并没有说只通过 I ...
- [POJ1193][NOI1999]内存分配(链表+模拟)
题意 时 刻 T 内存占用情况 进程事件 0 1 2 3 4 5 6 7 8 9 进程A申请空间(M=3, P=10)<成功> 1 A 2 A B 进程B申请空间(M=4, P=3)< ...
- NOIP-螺旋矩阵
题目描述 一个 n 行 n 列的螺旋矩阵可由如下方法生成: 从矩阵的左上角(第 1 行第 1 列)出发,初始时向右移动:如果前方是未曾经过的格子,则继续前进,否则右转:重复上述操作直至经过矩阵中所有格 ...
- 关于css中为什么要设置html和body的高度?
1.在怪异模式下,也就是网页的头部不写DOCTYPE的时候,body作为根元素,设置高度为百分百的时候.可以是页面的高度和浏览高度相同,在标准模式下也就是有DOCTYPE的时候,html才是根元素这时 ...
- css与html基础收集
1.css去掉iPhone.iPad默认按钮样式 nput[type="button"], input[type="submit"], input[type=& ...
- iOS浏览器 new Date() 返回 NaN
问题 项目中某个地方用到了倒计时,因此打算通过 new Date() 函数实现.但在 iPhone 真机测试的时候,显示的结果不符合预期.通过调试发现 iOS 中 new Date('2017-01- ...