春秋五霸说开

春秋五霸,是指东周春秋时期相继称霸主的五个诸侯,“霸”,意为霸主,即是诸侯之领袖。
典型的比如齐桓公,晋文公,春秋时期诸侯国的称霸,与今天要讨论的Raft算法很像。

一、更加直观的Raft算法

Raft 适用于一个管理日志一致性的协议,相比于 Paxos 协议 Raft 更易于理解和去实现它。
为了提高理解性,Raft 将一致性算法分为了几个部分,包括领导选取(leader selection)、日志复制(log replication)、安全(safety),并且使用了更强的一致性来减少了必须需要考虑的状态。

1.解决什么问题

分布式存储系统通常通过维护多个副本来提高系统的availability,带来的代价就是分布式存储系统的核心问题之一:维护多个副本的一致性。

Raft协议基于复制状态机(replicated state machine),即一组server从相同的初始状态起,按相同的顺序执行相同的命令,最终会达到一直的状态,一组server记录相同的操作日志,并以相同的顺序应用到状态机。

Raft有一个明确的场景,就是管理复制日志的一致性。

如图,每台机器保存一份日志,日志来自于客户端的请求,包含一系列的命令,状态机会按顺序执行这些命令。
一致性算法管理来自客户端状态命令的复制日志,保证状态机处理的日志中的命令的顺序都是一致的,因此会得到相同的执行结果。

2.Raft概览

先看一段动画演示,Understandable Distributed Consensus 。

相比Paxos,Raft算法理解起来直观的很。

Raft算法将Server划分为3种状态,或者也可以称作角色:

  • Leader

负责Client交互和log复制,同一时刻系统中最多存在1个。

  • Follower

被动响应请求RPC,从不主动发起请求RPC。

  • Candidate

一种临时的角色,只存在于leader的选举阶段,某个节点想要变成leader,那么就发起投票请求,同时自己变成candidate。如果选举成功,则变为candidate,否则退回为follower

状态或者说角色的流转如下:

在Raft中,问题分解为:领导选取、日志复制、安全和成员变化。

复制状态机通过复制日志来实现:

  • 日志:每台机器保存一份日志,日志来自于客户端的请求,包含一系列的命令
  • 状态机:状态机会按顺序执行这些命令
  • 一致性模型:分布式环境下,保证多机的日志是一致的,这样回放到状态机中的状态是一致的

二、Raft算法流程

Raft中使用心跳机制来出发leader选举。当服务器启动的时候,服务器成为follower。只要follower从leader或者candidate收到有效的RPCs就会保持follower状态。如果follower在一段时间内(该段时间被称为election timeout)没有收到消息,则它会假设当前没有可用的leader,然后开启选举新leader的流程。

1.Term

Term的概念类比中国历史上的朝代更替,Raft 算法将时间划分成为任意不同长度的任期(term)。

任期用连续的数字进行表示。每一个任期的开始都是一次选举(election),一个或多个候选人会试图成为领导人。如果一个候选人赢得了选举,它就会在该任期的剩余时间担任领导人。在某些情况下,选票会被瓜分,有可能没有选出领导人,那么,将会开始另一个任期,并且立刻开始下一次选举。Raft 算法保证在给定的一个任期最多只有一个领导人。

2.RPC

Raft 算法中服务器节点之间通信使用远程过程调用(RPCs),并且基本的一致性算法只需要两种类型的 RPCs,为了在服务器之间传输快照增加了第三种 RPC。

RPC有三种:

  • RequestVote RPC:候选人在选举期间发起
  • AppendEntries RPC:领导人发起的一种心跳机制,复制日志也在该命令中完成
  • InstallSnapshot RPC: 领导者使用该RPC来发送快照给太落后的追随者

3.选举流程

(1)follower增加当前的term,转变为candidate。
(2)candidate投票给自己,并发送RequestVote RPC给集群中的其他服务器。
(3)收到RequestVote的服务器,在同一term中只会按照先到先得投票给至多一个candidate。且只会投票给log至少和自身一样新的candidate。

candidate节点保持(2)的状态,直到下面三种情况中的一种发生。

  • 该节点赢得选举。即收到大多数的节点的投票。则其转变为leader状态。
  • 另一个服务器成为了leader。即收到了leader的合法心跳包(term值等于或大于当前自身term值)。则其转变为follower状态。
  • 一段时间后依然没有胜者。该种情况下会开启新一轮的选举。

Raft中使用随机选举超时时间来解决当票数相同无法确定leader的问题。

4.日志复制

日志复制(Log Replication)主要作用是用于保证节点的一致性,这阶段所做的操作也是为了保证一致性与高可用性。

当Leader选举出来后便开始负责客户端的请求,所有事务(更新操作)请求都必须先经过Leader处理,日志复制(Log Replication)就是为了保证执行相同的操作序列所做的工作。

在Raft中当接收到客户端的日志(事务请求)后先把该日志追加到本地的Log中,然后通过heartbeat把该Entry同步给其他Follower,Follower接收到日志后记录日志然后向Leader发送ACK,当Leader收到大多数(n/2+1)Follower的ACK信息后将该日志设置为已提交并追加到本地磁盘中,通知客户端并在下个heartbeat中Leader将通知所有的Follower将该日志存储在自己的本地磁盘中。

三、Raft和Paxos的工程应用

Raft算法的论文相比Paxos直观很多,更容易在工程上实现。

可以看到Raft算法的实现已经非常多了,https://raft.github.io/#implementations

1.Raft的应用

这里用ETCD来关注Raft的应用,ETCD目标是构建一个高可用的分布式键值(key-value)数据库,基于 Go 语言实现。
Etcd 主要用途是共享配置和服务发现,实现一致性使用了Raft算法。
更多Etcd的应用可以查看文档:https://coreos.com/etcd/docs/latest/

2.Zookeeper 中的 Paxos

Zookeeper 使用了一种修改后的 Paxos 协议。

在 Zookeeper 中,始终分为两种场景:

  • Leader activation

在这个场景里,系统中缺乏 Leader(primary),通过一个类似 paxos 协议的过程完成 Leader 选举。

  • Active messaging
    在 这个场景里,Leader 接收客户端发送的更新操作,以一种类似两阶段提交的过程在各个 follower (secondary)节点上进行更新操作。

在 Leader activation 场景中完成 leader 选举及数据同步后,系统转入 Active messaging 场景,在 active messaging 中 leader 异常后,系统转入 Leader activation 场景。

无论在那种场景,Zookeeper 依赖于一个全局版本号:zxid。zxid 由(epoch, count)两部分组成, 高位的 epoch 部分是选举编号,每次提议进行新的 leader 选举时 epoch 都会增加,低位的 count 部分 是 leader 为每个更新操作决定的序号。可以认为,一个 leader 对应一个唯一的 epoch,每个 leader 任期内产生的更新操作对应一个唯一的有序的 count,从而从全局的视野,一个 zxid 代表了一个更新操作的全局序号(版本号)。

Zookeeper 通过 zxid 将两个场景阶段较好的结合起来,且能保证全局的强一致性。由于同一时刻只有一个 zookeeper 节点能获得超过半数的 follower,所以同一时刻最多只存在唯一的 leader;每个 leader 利用 FIFO 以 zxid 顺序更新各个 follower,只有成功完成前一个更新操作的才会进行下一个更新操作,在同一个 leader 任期内,数据在全局满足 quorum 约束的强一致,即读超过半数的节点 一定可以读到最新已提交的数据;每个成功的更新操作都至少被超过半数的节点确认,使得新选举 的 leader 一定可以包括最新的已成功提交的数据。

3.如何解决split brain问题

分布式协议一个著名问题就是 split brain 问题。

简单说,就是比如当你的 cluster 里面有两个结点,它们都知道在这个 cluster 里需要选举出一个 master。那么当它们两之间的通信完全没有问题的时候,就会达成共识,选出其中一个作为 master。但是如果它们之间的通信出了问题,那么两个结点都会觉得现在没有 master,所以每个都把自己选举成 master。于是 cluster 里面就会有两个 master。

区块链的分叉其实类似分布式系统的split brain。

一般来说,Zookeeper会默认设置:

  • zookeeper cluster的节点数目必须是奇数。
  • zookeeper 集群中必须超过半数节点(Majority)可用,整个集群才能对外可用。

Majority 就是一种 Qunroms 的方式来支持Leader选举,可以防止 split brain出现。奇数个节点可以在相同容错能力的情况下节省资源。

四、从CAP的角度理解几种不同的算法

1.两阶段提交协议

两阶段提交系统具有完全的C,很糟糕的A,很糟糕的P。
首先,两阶段提交协议保证了副本间是完全一致的,这也是协议的设计目的。再者,协议在一个节点出现异常时,就无法更新数据,其服务可用性较低。最后,一旦协调者与参与者之间网络分化,无法提供服务。

2.Paxos和Raft算法

Paxos 协议和Raft算法都是强一致性协议。Paxos只有两种情况下服务不可用:一是超过半数的 Proposer 异常,二是出现活锁。前者可以通过增加 Proposer 的个数来 降低由于 Proposer 异常影响服务的概率,后者本身发生的概率就极低。最后,只要能与超过半数的 Proposer 通信就可以完成协议流程,协议本身具有较好的容忍网络分区的能力。

参考
Raft一致性算法
Raft 一致性算法论文译文

从分布式一致性到共识机制(二)Raft算法的更多相关文章

  1. 搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法

    搞懂分布式技术2:分布式一致性协议与Paxos,Raft算法 2PC 由于BASE理论需要在一致性和可用性方面做出权衡,因此涌现了很多关于一致性的算法和协议.其中比较著名的有二阶提交协议(2 Phas ...

  2. 从分布式一致性到共识机制(一)Paxos算法

    从分布式系统的CAP理论出发,关注分布式一致性,以及区块链的共识问题及解决. 区块链首先是一个大规模分布式系统,共识问题本质就是分布式系统的一致性问题,但是又有很大的不同.工程开发中,认为系统中存在故 ...

  3. 对标Eureka的AP一致性,Nacos如何实现Raft算法

    一.快速了解Raft算法 Raft 适用于一个管理日志一致性的协议,相比于 Paxos 协议 Raft 更易于理解和去实现它. 为了提高理解性,Raft 将一致性算法分为了几个部分,包括领导选取(le ...

  4. [从Paxos到ZooKeeper][分布式一致性原理与实践]<二>一致性协议[Paxos算法]

    Overview 在<一>有介绍到,一个分布式系统的架构设计,往往会在系统的可用性和数据一致性之间进行反复的权衡,于是产生了一系列的一致性协议. 为解决分布式一致性问题,在长期的探索过程中 ...

  5. Raft——可理解的分布式一致性算法

    Raft  Understandable Distributed Consensus http://thesecretlivesofdata.com/raft/ 一个直观的动画,便于理解raft算法. ...

  6. 【分布式一致性】etcd

    etcd: https://jimmysong.io/kubernetes-handbook/concepts/etcd.html 什么是 分布式一致性: http://thesecretliveso ...

  7. Raft算法,从学习到忘记

    Raft算法,从学习到忘记 --Raft算法阅读笔记. --Github 概述 说到分布式一致性算法,可能大多数人的第一反应是paxos算法.但是paxos算法一直以来都被认为是难以理解,难以实现.S ...

  8. Raft 为什么是更易理解的分布式一致性算法

    一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...

  9. 【转】Raft 为什么是更易理解的分布式一致性算法

    编者按:这是看过的Raft算法博客中比较通俗的一篇了,讲解问题的角度比较新奇,图文并茂,值得一看.原文链接:Raft 为什么是更易理解的分布式一致性算法 一致性问题可以算是分布式领域的一个圣殿级问题了 ...

随机推荐

  1. tensorflow Pipeline 之TextLineReader 和decode_csv多分割替代方案

    1.TextLineReader reader = tf.TextLineReader() key, value = reader.read(filename_queue) record_defaul ...

  2. Tensorflow计算正确率、精确率、召回率

    二分类模型的评价指标 https://www.cnblogs.com/xiaoniu-666/p/10511694.html 参考tf的方法 predictions = tf.argmax(predi ...

  3. DirectX11--教程项目无法编译、运行的解决方法

    综述 对于Win10系统的大多数用户来说,可以直接编译本教程对应的项目并运行.但也有部分用户由于某些原因可能会出现无法编译的情况. DirectX11 With Windows SDK完整目录 欢迎加 ...

  4. C++常见问题解答博客合集

    1 关于宏 https://blog.csdn.net/hanchaoman/article/details/8809951

  5. nginx资料汇总

    nginx docker 中的一些目录和 windows下是不同的, 静态内容目录: /usr/share/nginx/html 配置文件目录: /etc/nginx 日志输出目录: /var/log ...

  6. Asp.net core 3.0

    序言 我的看法:如果你未来五到十年还打算靠 ASP.NET 吃饭,ASP.NET MVC 一定要学,写 WebForm 工作机会将变得很少,具备 MVC 技能才有本钱跟年轻小伙子们抢饭碗,很高比例的 ...

  7. Swift 4.0.2 按下tab bar item时, item会有内缩的animation效果(如同Twitter的tab bar 效果一样)

    先上效果图: 假设 tab bar items 有5个.tag为0,1,2,3,4.storyboard中tab bar controller继承的class叫做xxxVC. class xxxVC: ...

  8. window.location的方法属性详解

    示例URL:http://b.a.com:88/index.php?name=kang&when=2011#first 属性 含义 值 protocol: 协议 "http:&quo ...

  9. 微信最新跳转浏览器功能源码,实现微信内跳转手机浏览器访问网页url

    微信最新自动跳转外部浏览器下载app/打开指定页面源码 源码说明: 适用安卓和苹果系统,支持任何网页链接.并且无论链接是否已经被微信拦截,均可实现微信内自动跳转浏览器打开. 生成的跳转链接具有极佳的防 ...

  10. UEFI+GPT安装WIN7,WIN8/WIN10下安装WIN7双系统

    一.BIOS更改 首先来bios更改:我们知道,uefi+gpt引导虽然出来的时间比较长,但是win7还不能完全的支持,所以在使用uefi+gpt安装win7的时候就会出现各种错误!所以我们在安装Wi ...