1. 36氪(36kr)数据----写在前面

今天抓取一个新闻媒体,36kr的文章内容,也是为后面的数据分析做相应的准备的,预计在12月底,爬虫大概写到50篇案例的时刻,将会迎来一个新的内容,系统的数据分析博文,记得关注哦~

36kr 让一部分人先看到未来,而你今天要做的事情确实要抓取它的过去。

网址 https://36kr.com/

2. 36氪(36kr)数据----数据分析

36kr的页面是一个瀑布流的效果,当你不断的下拉页面的时候,数据从后台追加过来,基于此,基本可以判断它是ajax异步的数据,只需要打开开发者工具,就能快速的定位到想要的数据,我们尝试一下!

捕获链接如下

https://36kr.com/api/search-column/mainsite?per_page=20&page=1&_=1543840108547
https://36kr.com/api/search-column/mainsite?per_page=20&page=2&_=1543840108547
https://36kr.com/api/search-column/mainsite?per_page=20&page=3&_=1543840108547
https://36kr.com/api/search-column/mainsite?per_page=20&page=4&_=1543840108547

在多次尝试之后,发现per_page最大可以扩展到300,但是当大于100的数据,返回的数据并不是很理想,所以,我们拟定为100即可,page就是页码,这个不断循环叠加即可。



上面的参数还有一个更加重要的值,叫做total_count 总共有多少文章数目。有这个参数,我们就能快速的拼接出来,想要的页码了。

3. 36氪(36kr)数据----创建scrapy项目

scrapy startproject kr36

4. 36氪(36kr)数据----创建爬虫入口页面

scrapy genspider Kr36 "www.gaokaopai.com"

5. 36氪(36kr)数据----编写url生成器

页面起始地址start_urls为第一页数据,之后会调用parse函数,在函数内容,我们去获取total_count这个参数

这个地方,需要注意 yield 返回数据为Request() 关于他的详细说明,请参照

https://scrapy-chs.readthedocs.io/zh_CN/0.24/topics/request-response.html

所有参数清单,参数名字起得好,基本都能代表所有的意思了。比较重要的是urlcallback

class scrapy.http.Request(url[, callback, method='GET', headers, body, cookies, meta, encoding='utf-8', priority=0, dont_filter=False, errback])
class Kr36Spider(scrapy.Spider):
name = 'Kr36'
allowed_domains = ['36kr.com'] start_urls = ['https://36kr.com/api/search-column/mainsite?per_page=100&page=1&_=']
def parse(self, response):
data = json.loads(response.body_as_unicode())
totle = int(data["data"]["total_count"])
#totle = 201 for page in range(2,int(totle/100)+2):
print("正在爬取{}页".format(page),end="")
yield Request("https://36kr.com/api/search-column/mainsite?per_page=100&page={}&_=".format(str(page)), callback=self.parse_item)

6. 36氪(36kr)数据----解析数据

在解析数据过程中,发现有时候数据有缺失的情况发生,所以需要判断一下 app_views_countmobile_views_countviews_countfavourite_num 是否出现在字典中。

注意下面代码中的Kr36Item类,这个需要提前创建一下

Kr36Item


class Kr36Item(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
app_views_count = scrapy.Field() # APP观看数量
mobile_views_count = scrapy.Field() # 移动端观看数量
views_count = scrapy.Field() # PC观看数量
column_name = scrapy.Field() # 类别
favourite_num = scrapy.Field() # 收藏数量
title = scrapy.Field() # 标题
published_at = scrapy.Field() # 发布时间
is_free = scrapy.Field() # 是否免费
username = scrapy.Field()
    def parse_item(self,response):

        data = json.loads(response.body_as_unicode())
item = Kr36Item()
for one_item in data["data"]["items"]:
print(one_item)
item["app_views_count"] = one_item["app_views_count"] if "app_views_count" in one_item else 0# APP观看数量
item["mobile_views_count"] = one_item["mobile_views_count"] if "mobile_views_count" in one_item else 0 # 移动端观看数量
item["views_count"] = one_item["views_count"] if "views_count" in one_item else 0 # PC观看数量
item["column_name"] = one_item["column_name"] # 类别
item["favourite_num"] = one_item["favourite_num"] if "favourite_num" in one_item else 0 # 收藏数量
item["title"] = one_item["title"] # 标题
item["published_at"] = one_item["published_at"] # 发布时间
item["is_free"] = one_item["is_free"] if "is_free" in one_item else 0# 是否免费
item["username"] = json.loads(one_item["user_info"])["name"]
yield item

最后打开settings.py中的pipelines编写数据持久化代码

ITEM_PIPELINES = {
'kr36.pipelines.Kr36Pipeline': 300,
}
import os
import csv class Kr36Pipeline(object):
def __init__(self):
store_file = os.path.dirname(__file__)+'/spiders/36kr.csv'
self.file = open(store_file,"a+",newline="",encoding="utf_8_sig")
self.writer = csv.writer(self.file)
def process_item(self, item, spider):
try:
self.writer.writerow((
item["title"],
item["app_views_count"],
item["mobile_views_count"],
item["views_count"],
item["column_name"],
item["favourite_num"],
item["published_at"],
item["is_free"],
item["username"]
))
print("数据存储完毕")
except Exception as e:
print(e.args) def close_spider(self,spider):
self.file.close()

7. 36氪(36kr)数据----获取数据

运行上述代码,没有做过多的处理,也没有调整并发速度,也没有做反爬措施。跑了一下,大概获取到了69936条数据,和预估的差了300多条,问题不大,原因没细查,哈哈哈哈

Python爬虫入门教程 31-100 36氪(36kr)数据抓取 scrapy的更多相关文章

  1. Python爬虫入门教程 23-100 石家庄链家租房数据抓取

    1. 写在前面 作为一个活跃在京津冀地区的开发者,要闲着没事就看看石家庄这个国际化大都市的一些数据,这篇博客爬取了链家网的租房信息,爬取到的数据在后面的博客中可以作为一些数据分析的素材. 我们需要爬取 ...

  2. Python爬虫入门教程 21-100 网易云课堂课程数据抓取

    写在前面 今天咱们抓取一下网易云课堂的课程数据,这个网站的数据量并不是很大,我们只需要使用requests就可以快速的抓取到这部分数据了. 你第一步要做的是打开全部课程的地址,找出爬虫规律, 地址如下 ...

  3. Python爬虫入门教程 19-100 51CTO学院IT技术课程抓取

    写在前面 从今天开始的几篇文章,我将就国内目前比较主流的一些在线学习平台数据进行抓取,如果时间充足的情况下,会对他们进行一些简单的分析,好了,平台大概有51CTO学院,CSDN学院,网易云课堂,慕课网 ...

  4. Python爬虫入门教程 15-100 石家庄政民互动数据爬取

    石家庄政民互动数据爬取-写在前面 今天,咱抓取一个网站,这个网站呢,涉及的内容就是 网友留言和回复,特别简单,但是网站是gov的.网址为 http://www.sjz.gov.cn/col/14900 ...

  5. Python爬虫入门教程 18-100 煎蛋网XXOO图片抓取

    写在前面 很高兴我这系列的文章写道第18篇了,今天写一个爬虫爱好者特别喜欢的网站煎蛋网http://jandan.net/ooxx,这个网站其实还是有点意思的,网站很多人写了N多的教程了,各种方式的都 ...

  6. Python爬虫入门教程第七讲: 蜂鸟网图片爬取之二

    蜂鸟网图片--简介 今天玩点新鲜的,使用一个新库 aiohttp ,利用它提高咱爬虫的爬取速度. 安装模块常规套路 pip install aiohttp 运行之后等待,安装完毕,想要深造,那么官方文 ...

  7. Python爬虫:新浪新闻详情页的数据抓取(函数版)

    上一篇文章<Python爬虫:抓取新浪新闻数据>详细解说了如何抓取新浪新闻详情页的相关数据,但代码的构建不利于后续扩展,每次抓取新的详情页时都需要重新写一遍,因此,我们需要将其整理成函数, ...

  8. Python爬虫入门教程 48-100 使用mitmdump抓取手机惠农APP-手机APP爬虫部分

    1. 爬取前的分析 mitmdump是mitmproxy的命令行接口,比Fiddler.Charles等工具方便的地方是它可以对接Python脚本. 有了它我们可以不用手动截获和分析HTTP请求和响应 ...

  9. Python爬虫入门教程 43-100 百思不得姐APP数据-手机APP爬虫部分

    1. Python爬虫入门教程 爬取背景 2019年1月10日深夜,打开了百思不得姐APP,想了一下是否可以爬呢?不自觉的安装到了夜神模拟器里面.这个APP还是比较有名和有意思的. 下面是百思不得姐的 ...

随机推荐

  1. Mysql学习笔记03

    Mysql 的视图 1  view  在查询中,我们经常把查询结果当成临时表来看, view 是什么? View 可以看成一张虚拟的表,是表通过某种运算得到的有一个投影. 2 如何创建视图? 创建视图 ...

  2. 计算机硬件&操作系统

    一.计算机的硬件: 控制器:计算机的指挥系统 运算器:数学运算+逻辑运算 存储器I/O设备:存I取O数据   内存(内存条):短期记忆,速度快,但是断电数据会丢失:   外存(硬盘):永久记忆,速度非 ...

  3. [CF893F] Subtree Minimum Query

    Description: 给定一棵树,每次询问某点子树中到其不超过k的所有点的最小点权 强制在线 Hint: \(n,m\le 10^5\) Solution: 看到题目第一反应是以深度为下标,dfs ...

  4. 使用anaconda创建tensorflow环境后如何在jupyter notebook中使用

    在以下目录中 C:\Users\UserName\AppData\Roaming\jupyter\kernels\python3 打开kernel.json文件,将python.exe文件的路径修改至 ...

  5. 从Excel导数据到MySQL速度优化

    运行环境: Windows10 和 Deepin15.7, MySQL14.4, Java1.8.0_181使用工具: poi,JDBC数据规模: 35万条,5个文件夹,146个Excel文件(.xl ...

  6. Vue 记录 Cannot read property '_withTask' of undefined

    第二次遇到,年前偶尔代码中频繁出现过,因为没影响到交互,赶工期中,没有去深究. 今天又遇到了, 在事件触发后,脚本报错,终止了界面交互. 最后查找到这里的原因,检查并移除无效业务事件,错误消失了. ( ...

  7. 软件工程第三周的学习报告 html<input> final finally finalize 的比较 BigInteger

    三月十三号下午: html的<input>的三个属性pattern(限定用户的输入格式)与placeholder(显示的)与required(不能为空) 代码案例: pattern与pla ...

  8. 微信网页悬浮窗交互效果的web实现

    一.微信的悬浮窗交互效果 微信更新后,发现多了个悬浮窗功能.公众号阅读,网页浏览回退后默认会出现.再点击,可以回到刚才阅读的地方.于是,再也不会遇到回复老婆的信息,再切换回来重新找刚才阅读东西的麻烦了 ...

  9. Markdown基础语法笔记

    # 一级标题## 二级标题### 三级标题###### #号之后记得加一个空格 仅支持1-6级标题  ### 列表 - 文本1 - 文本2 - 文本3+ 列表2* 列表2 ### 有序列表1. 有序文 ...

  10. docker 安装 zookeeper

    镜像下载hub.docker.com 上有不少 ZK 镜像, 不过为了稳定起见, 我们就使用官方的 ZK 镜像吧.首先执行如下命令: docker pull zookeeper当出现如下结果时, 表示 ...