第三篇nova— 计算服务
一、nova介绍:
     
      Nova 是 OpenStack 最核心的服务,负责维护和管理云环境的计算资源。OpenStack 作为 IaaS 的云操作系统,虚拟机生命周期管理也就是通过 Nova 来实现的。
 
用途与功能 :
1) 实例生命周期管理
2) 管理计算资源
3) 网络和认证管理
4)REST 风格的 API
5) 异步的一致性通信
6)Hypervisor 透明:支持Xen,XenServer/XCP,KVM, UML, VMware vSphere and Hyper-V
 
 
在上图中可以看到,Nova 处于 Openstak 架构的中心,其他组件都为 Nova 提供支持: Glance 为 VM 提供 image Cinder 和 Swift 分别为 VM 提供块存储和对象存储 Neutron 为 VM 提供网络连接。
 
Nova 架构如下:
 
 
Nova 的架构比较复杂,包含很多组件。 这些组件以子服务(后台 deamon 进程)的形式运行,可以分为以下几类:
 
API
 
nova-api
是整个 Nova 组件的门户,接收和响应客户的 API 调用。所有对 Nova 的请求都首先由 nova-api 处理。nova-api 向外界暴露若干 HTTP REST API 接口 在 keystone 中我们可以查询 nova-api 的 endponits。
客户端就可以将请求发送到 endponits 指定的地址,向 nova-api 请求操作。 当然,作为最终用户的我们不会直接发送 Rest AP I请求。 OpenStack CLI,Dashboard 和其他需要跟 Nova 交换的组件会使用这些 API。
 
Nova-api 对接收到的 HTTP API 请求会做如下处理:
1. 检查客户端传入的参数是否合法有效
2. 调用 Nova 其他子服务的处理客户端 HTTP 请求
3. 格式化 Nova 其他子服务返回的结果并返回给客户端
 
nova-api 接收哪些请求?
简单的说,只要是跟虚拟机生命周期相关的操作,nova-api 都可以响应。 大部分操作都可以在 Dashboard 上找到。打开Instance管理界面
除了提供 OpenStack 自己的API,nova-api 还支持 Amazon EC2 API。 也就是说,如果客户以前使用 Amazon EC2,并且用 EC2 的 API 开发了些工具来管理虚机,那么如果现在要换成 OpenStack,这些工具可以无缝迁移到 OpenStack,因为 nova-api 兼容 EC2 API,无需做任何修改。
 
Compute Core
 
a)nova-scheduler:
虚机调度服务,负责决定在哪个计算节点上运行虚机。创建 Instance 时,用户会提出资源需求,例如 CPU、内存、磁盘各需要多少。OpenStack 将这些需求定义在 flavor 中,用户只需要指定用哪个 flavor 就可以了。
可用的 flavor 在 System->Flavors 中管理。
 
下面介绍 nova-scheduler 是如何实现调度的。在 /etc/nova/nova.conf 中,nova 通过 driver=filter_scheduler 这个参数来配置 nova-scheduler。
driver=filter_scheduler
 
Filter scheduler
Filter scheduler 是 nova-scheduler 默认的调度器,调度过程分为两步:
1. 通过过滤器(filter)选择满足条件的计算节点(运行 nova-compute)
2. 通过权重计算(weighting)选择在最优(权重值最大)的计算节点上创建 Instance。
 
Nova 允许使用第三方 scheduler,配置 scheduler_driver 即可。 这又一次体现了OpenStack的开放性。Scheduler 可以使用多个 filter 依次进行过滤,过滤之后的节点再通过计算权重选出最适合的节点。
 
上图是调度过程的一个示例:
1. 最开始有 6 个计算节点 Host1-Host6
2. 通过多个 filter 层层过滤,Host2 和 Host4 没有通过,被刷掉了
3. Host1,Host3,Host5,Host6 计算权重,结果 Host5 得分最高,最终入选
 
当 Filter scheduler 需要执行调度操作时,会让 filter 对计算节点进行判断,filter 返回 True 或 False。经过前面一堆 filter 的过滤,nova-scheduler 选出了能够部署 instance 的计算节点。
 
如果有多个计算节点通过了过滤,那么最终选择哪个节点呢?
 
Scheduler 会对每个计算节点打分,得分最高的获胜。 打分的过程就是 weight,翻译过来就是计算权重值,那么 scheduler 是根据什么来计算权重值呢? 
 
目前 nova-scheduler 的默认实现是根据计算节点空闲的内存量计算权重值: 空闲内存越多,权重越大,instance 将被部署到当前空闲内存最多的计算节点上。
 
 
b)nova-compute:
nova-compute 是管理虚机的核心服务,在计算节点上运行。通过调用Hypervisor API实现节点上的 instance的生命周期管理。 OpenStack 对 instance 的操作,最后都是交给 nova-compute 来完成的。 nova-compute 与 Hypervisor 一起实现 OpenStack 对 instance 生命周期的管理。
 
通过Driver架构支持多种Hypervisor
Hypervisor是计算节点上跑的虚拟化管理程序,虚机管理最底层的程序。 不同虚拟化技术提供自己的 Hypervisor。 常用的 Hypervisor 有 KVM,Xen, VMWare 等。nova-compute 为这些 Hypervisor 定义了统一的接口,Hypervisor 只需要实现这些接口,就可以 Driver 的形式即插即用到 OpenStack 系统中。 下面是Nova Driver的架构示意图:
 
 
 
c)nova-conductor:
nova-compute 经常需要更新数据库,比如更新和获取虚机的状态。 出于安全性和伸缩性的考虑,nova-compute 并不会直接访问数据库,而是将这个任务委托给 nova-conductor。
这样做有两个显著好处:
1. 更高的系统安全性
2. 更好的系统伸缩性
 
 
Console Interface
 
nova-console: 用户可以通过多种方式访问虚机的控制台:
nova-novncproxy: 基于 Web 浏览器的 VNC 访问
nova-spicehtml5proxy: 基于 HTML5 浏览器的 SPICE 访问
nova-xvpnvncproxy: 基于 Java 客户端的 VNC 访问
nova-consoleauth: 负责对访问虚机控制台请求提供 Token 认证
nova-cert: 提供 x509 证书支持
 
Database
 
Nova 会有一些数据需要存放到数据库中,一般使用 MySQL。数据库安装在控制节点上。 Nova 使用命名为 “nova” 的数据库。
 
 
Message Queue
在前面我们了解到 Nova 包含众多的子服务,这些子服务之间需要相互协调和通信。为解耦各个子服务,Nova 通过 Message Queue 作为子服务的信息中转站。 所以在架构图上我们看到了子服务之间没有直接的连线,是通过 Message Queue 联系的。
 
 
OpenStack 默认是用 RabbitMQ 作为 Message Queue。 MQ 是 OpenStack 的核心基础组件,我们后面也会详细介绍。
 
 
二、Nova 组件如何协同工作
 
Nova 物理部署方案                                                                                       
 
       前面大家已经看到 Nova 由很多子服务组成,我们也知道 OpenStack 是一个分布式系统,可以部署到若干节点上,那么接下来大家可能就会问:Nova 的这些服务在物理上应该如何部署呢?
 
对于 Nova,这些服务会部署在两类节点上:计算节点和控制节点。
 
计算节点上安装了 Hypervisor,上面运行虚拟机。 由此可知:
1. 只有 nova-compute 需要放在计算节点上。
2. 其他子服务则是放在控制节点上的。
 
下面我们可以看看实验环境的具体部署情况。 通过在计算节点和控制节点上运行
ps -elf | grep nova 来查看运行的 nova 子服务
 
计算节点compute只运行了nova-compute子服务
 
控制节点controller运行了若干nova-*子服务
 
RabbitMQ 和 MySQL 也是放在控制节点上的。可能细心的同学已经发现我们的控制节点上也运行了 nova-compute。 这实际上也就意味着 devstack-controller 既是一个控制节点,同时也是一个计算节点,也可以在上面运行虚机。
 
这也向我们展示了 OpenStack 这种分布式架构部署上的灵活性: 可以将所有服务都放在一台物理机上,作为一个 All-in-One 的测试环境; 也可以将服务部署在多台物理机上,获得更好的性能和高可用。
 
另外,也可以用 nova service-list 查看 nova-* 子服务都分布在哪些节点上
 
 
从虚机创建流程看 nova-* 子服务如何协同工作                                    
      
     从学习 Nova 的角度看,虚机创建是一个非常好的场景,涉及的 nova-* 子服务很全,下面是流程图。
 
  1. 客户(可以是 OpenStack 最终用户,也可以是其他程序)向 API(nova-api)发送请求:“帮我创建一个虚机”
     
  2. API 对请求做一些必要处理后,向 Messaging(RabbitMQ)发送了一条消息:“让 Scheduler 创建一个虚机”
     
  3. Scheduler(nova-scheduler)从 Messaging 获取到 API 发给它的消息,然后执行调度算法,从若干计算节点中选出节点 A
     
  4. Scheduler 向 Messaging 发送了一条消息:“在计算节点 A 上创建这个虚机”
     
  5. 计算节点 A 的 Compute(nova-compute)从 Messaging 中获取到 Scheduler 发给它的消息,然后在本节点的 Hypervisor 上启动虚机。
     
  6. 在虚机创建的过程中,Compute 如果需要查询或更新数据库信息,会通过 Messaging 向 Conductor(nova-conductor)发送消息,Conductor 负责数据库访问。
     
以上是创建虚机最核心的步骤, 这几个步骤向我们展示了 nova-* 子服务之间的协作的方式,也体现了 OpenStack 整个系统的分布式设计思想,掌握这种思想对我们深入理解 OpenStack 会非常有帮助。
 
 
 
 
三、nova配置文件:
[DEFAULT]
my_ip=172.16.254.63
use_neutron = True
firewall_driver = nova.virt.firewall.NoopFirewallDriver
enabled_apis=osapi_compute,metadata
 
[api]
auth_strategy = keystone
 
[api_database]
 
[barbican]
 
[cache]
 
[cells]
 
[cinder]
os_region_name = RegionOne
 
[cloudpipe]
 
[conductor]
 
[console]
 
[consoleauth]
 
[cors]
 
[cors.subdomain]
 
[crypto]
 
[database]
 
[ephemeral_storage_encryption]
 
[filter_scheduler]
 
[glance]
api_servers = http://controller:9292
 
[guestfs]
 
[healthcheck]
 
[hyperv]
 
[image_file_url]
 
[ironic]
 
[key_manager]
 
[keystone_authtoken]
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = nova
password = nova
 
[libvirt]
virt_type=qemu
 
[matchmaker_redis]
 
[metrics]
 
[mks]
 
[neutron]
auth_type = password
project_domain_name = default
user_domain_name = default
region_name = RegionOne
project_name = service
username = neutron
password = neutron
service_metadata_proxy = true
metadata_proxy_shared_secret = METADATA_SECRET
 
[notifications]
 
[osapi_v21]
 
[oslo_concurrency]
lock_path=/var/lib/nova/tmp
 
[oslo_messaging_amqp]
 
[oslo_messaging_kafka]
 
[oslo_messaging_notifications]
 
[oslo_messaging_rabbit]
 
[oslo_messaging_zmq]
 
[oslo_middleware]
 
[oslo_policy]
 
[pci]
[placement]
os_region_name = RegionOne
auth_type = password
project_name = service
project_domain_name = Default
username = placement
password = placement
user_domain_name = Default
 
[quota]
 
[rdp]
 
[remote_debug]
 
[scheduler]
 
[serial_console]
 
[service_user]
 
[spice]
 
[ssl]
 
[trusted_computing]
 
[upgrade_levels]
 
[vendordata_dynamic_auth]
 
[vmware]
 
[vnc]
enabled=true
vncserver_listen=$my_ip
vncserver_proxyclient_address=$my_ip
 
[workarounds]
 
[wsgi]
 
[xenserver]
 
[xvp]

openstack第三章:nova的更多相关文章

  1. openstack安装newton版本Nova部署(三)

    一.控制节点安装部署Nova Nova 包含API(负责接收相应外部请求,支持OpenStackAPI,EC2API):cert:负责身份认证:schedule:用于云主机调度(虚拟机创建在哪台主机上 ...

  2. openstack Q版部署-----nova服务配置-控制节点(5)

    一.创建数据库(控制节点) 创建数据库以及用户: CREATE DATABASE nova_api; CREATE DATABASE nova; CREATE DATABASE nova_cell0; ...

  3. S1_搭建分布式OpenStack集群_06 nova服务配置 (控制节点)

    一.创建数据库(控制节点)创建数据库以及用户:# mysql -uroot -p12345678MariaDB [(none)]> CREATE DATABASE nova_api;MariaD ...

  4. 学习openstack(三)

      一.OpenStack初探 1.1 OpenStack简介 OpenStack是一整套开源软件项目的综合,它允许企业或服务提供者建立.运行自己的云计算和存储设施.Rackspace与NASA是最初 ...

  5. 《Django By Example》第三章 中文 翻译 (个人学习,渣翻)

    书籍出处:https://www.packtpub.com/web-development/django-example 原作者:Antonio Melé (译者注:第三章滚烫出炉,大家请不要吐槽文中 ...

  6. 《Linux内核设计与实现》读书笔记 第三章 进程管理

    第三章进程管理 进程是Unix操作系统抽象概念中最基本的一种.我们拥有操作系统就是为了运行用户程序,因此,进程管理就是所有操作系统的心脏所在. 3.1进程 概念: 进程:处于执行期的程序.但不仅局限于 ...

  7. Python黑帽编程3.0 第三章 网络接口层攻击基础知识

    3.0 第三章 网络接口层攻击基础知识 首先还是要提醒各位同学,在学习本章之前,请认真的学习TCP/IP体系结构的相关知识,本系列教程在这方面只会浅尝辄止. 本节简单概述下OSI七层模型和TCP/IP ...

  8. 《Entity Framework 6 Recipes》中文翻译系列 (11) -----第三章 查询之异步查询

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 第三章 查询 前一章,我们展示了常见数据库场景的建模方式,本章将向你展示如何查询实体 ...

  9. 《Entity Framework 6 Recipes》中文翻译系列 (19) -----第三章 查询之使用位操作和多属性连接(join)

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 3-16  过滤中使用位操作 问题 你想在查询的过滤条件中使用位操作. 解决方案 假 ...

随机推荐

  1. Mybatis学习(七)————— mybatis的逆向工程的配置详解

    一.什么是逆向工程? 简单点说,就是通过数据库中的单表,自动生成java代码. Mybatis官方提供了逆向工程,可以针对单表自动生成mybatis代码(mapper.java\mapper.xml\ ...

  2. 第12章 添加对外部认证的支持 - Identity Server 4 中文文档(v1.0.0)

    注意 对于任何先决条件(例如模板),首先要查看概述. 接下来,我们将添加对外部认证的支持.这非常简单,因为您真正需要的是ASP.NET Core兼容的身份验证处理程序. ASP.NET Core本身支 ...

  3. 你必须知道的.net读书笔记第四回:后来居上:class和struct

     基本概念 1.1. 什么是class? class(类)是面向对象编程的基本概念,是一种自定义数据结构类型,通常包含字段.属性.方法.属性.构造函数.索引器.操作符等.因为是基本的概念,所以不必在此 ...

  4. Java开发笔记(七十二)Java8新增的流式处理

    通过前面几篇文章的学习,大家应能掌握几种容器类型的常见用法,对于简单的增删改和遍历操作,各容器实例都提供了相应的处理方法,对于实际开发中频繁使用的清单List,还能利用Arrays工具的asList方 ...

  5. You are what you write——沈向洋

    title: You are what you write--沈向洋 date: 2018-02-21 13:18:28 tags: [随想,write] categories: 个人文章 --- A ...

  6. 原生js及H5模拟鼠标点击拖拽

    一.原生js 1.拖拽的流程动作 鼠标按下 触发onmousedown事件 鼠标移动 触发onmousemove事件 鼠标松开 触发onmouseup事件 2.注意事项: 要防止div移出可视框,要限 ...

  7. 搞懂 JavaScript 继承原理

    在理解继承之前,需要知道 js 的三个东西: 什么是 JS 原型链 this 的值到底是什么 JS 的 new 到底是干什么的 1. 什么是 JS 原型链? 我们知道 JS 有对象,比如 var ob ...

  8. js之正则的坑

    首先给一个神奇的图: 我的反应,精分吧!一会儿true一会儿false的... 后来发现,把g去掉后就正常了,那这是为什么呢??lastIndex惹得鬼! 正文: lastIndex 全局正则表达是, ...

  9. ARM与FPGA通过spi通信设计1.spi基础知识

    SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息.SPI总线可直接与各个厂家生产 ...

  10. 或许,挂掉的点总是出人意料(hw其实蛮有好感的公司)

    1:问了有没有考研的打算,为什么: ` 实验室指导自己的两个学长, 他们两个都是不考研党派,当然两个学长本科都进入了不错的公司hw,xm,耳濡目染就自己也就不想去考研了: 跟一些已经工作的程序员聊天, ...