[物理学与PDEs]第1章习题15 媒介中电磁场的电磁动量密度向量与电磁动量流密度张量
对媒质中的电磁场, 推导其电磁动量密度向量及电磁动量流密度张量的表达式 (7. 47) 及 (7. 48).
解答: 由 $$\beex \bea \cfrac{\rd}{\rd t}\int_\Omega \cfrac{1}{c^2}{\bf S}\rd V &=\cfrac{\rd }{\rd t}\int_\Omega\cfrac{1}{c^2}{\bf E}\times{\bf H}\rd V\\&=\cfrac{1}{c^2}\int_\Omega \sex{\cfrac{\p{\bf E}}{\p t}\times{\bf H}+{\bf E}\times\cfrac{\p{\bf H}}{\p t}}\rd V\\ &=\cfrac{1}{c^2}\int_\Omega \sez{ \cfrac{1}{\ve} (\rot{\bf H}-{\bf j})\times {\bf H} +{\bf E}\times\cfrac{1}{\mu}(-\rot{\bf E}) }\rd V\\ &=\cfrac{1}{c^2}\int_\Omega \sez{ \cfrac{1}{\ve}\rot{\bf H}\times{\bf H} +\cfrac{1}{\mu}\rot{\bf E}\times{\bf E} -\cfrac{1}{\ve}{\bf j}\times {\bf H} }\rd V\\ &=\cfrac{1}{c^2\ve}\int_\Omega \sez{\Div({\bf H}\otimes {\bf H}) -(\Div{\bf H}){\bf H}-\cfrac{1}{2}\Div(H^2{\bf I})}\rd V\\ &\quad+\cfrac{1}{c^2\mu}\int_\Omega \sez{ \Div({\bf E}\otimes {\bf E})-(\Div{\bf E}){\bf E}-\cfrac{1}{2}\Div(E^2{\bf I}) }\rd V\\&\quad-\cfrac{1}{2}\int_\Omega{\bf j}\times{\bf H}\rd V\\ &=\int_{\p\Omega} \sez{ \mu{\bf H}\otimes{\bf H}+\ve{\bf E}\otimes {\bf E}-\cfrac{1}{2}(\mu H^2+\ve E^2){\bf I} }\cdot {\bf n}\rd S\\ &\quad-\int_\Omega \sez{\ve(\Div{\bf E}){\bf E} +\mu(\Div{\bf H}){\bf H}}\rd V-\cfrac{1}{\ve}\int_\Omega {\bf j}\times{\bf H}\rd V. \eea \eeex$$ 即知结论 (注意物理意义).
[物理学与PDEs]第1章习题15 媒介中电磁场的电磁动量密度向量与电磁动量流密度张量的更多相关文章
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式. 证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\s ...
- [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...
- [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组
试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) ...
随机推荐
- 背景图片固定不随页面上下滚动而滚动 ,属性 background-attachment
<div id="testimonials-section" class="text-center"> </div> css: #tes ...
- SQL CHECK 约束
SQL CHECK 约束 CHECK 约束用于限制列中的值的范围. 如果对单个列定义 CHECK 约束,那么该列只允许特定的值. 如果对一个表定义 CHECK 约束,那么此约束会在特定的列中对值进行限 ...
- 《JAVA程序设计》_第四周学习总结
一.本周学习内容 1.子类与父类--5.1知识 在类的声明中用关键字extends来定义一个类的子类,格式如下: class 子类名 extends 父类名 { ... } 2.子类的继承性--5.2 ...
- 【原创】分布式事务之TCC事务模型
引言 在上篇文章<老生常谈--利用消息队列处理分布式事务>一文中留了一个坑,今天来填坑.如下图所示 如果服务A和服务B之间是同步调用,比如服务C需要按流程调服务A和服务B,服务A和服务B要 ...
- jQuery 图片查看插件 Magnify 开发简介(仿 Windows 照片查看器)
前言 因为一些特殊的业务需求,经过一个多月的蛰伏及思考,我开发了这款 jQuery 图片查看器插件 Magnify,它实现了 Windows 照片查看器的所有功能,比如模态窗的拖拽.调整大小.最大化, ...
- Linux 修改本地时间 (centos为例)
1. tzselect [root@xxxx etc]# tzselect --- 选择时区命令 Please identify a location so that time zone rules ...
- 小程序——返回上个页面触发事件(onUnload)
//页面销毁前--上传被提交的数据 onUnload:function(){ var _this=this; let updateStatus = wx.getStorageSync('UpdateS ...
- OpenStack-Nova(4)
一. Nova概述 使用OpenStack Compute来托管和管理云计算系统.OpenStack Compute是基础架构即服务(IaaS)系统的主要部分.主要模块在Python中实现. Open ...
- 其它综合-CentOS7 忘记root密码
CentOS7 忘记root密码 长时间不用的 CentOS 机器再次开机的时候忽然忘记了密码,总不能就重装一台吧,还有好多服务在机器上,于是决定重置root的密码. 如果是已经开启的机器,需要进行关 ...
- shell之获取终端信息
#!/bin/bash #tput和stty是两款终端处理工具 #获取列数和行数 tput cols tput lines #打印当前终端名 tput longname #移动光标 移动光标到100 ...