[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组.
证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0. \eex$$ 令 $U=(p,u,S,Z)^T$, 则 (3. 10)-(3. 13) 可化为 $$\bex A(U)\cfrac{\p U}{\p t}+B(U)\cfrac{\p U}{\p x}=C(U), \eex$$ 其中 $$\beex \bea A(U)&=\diag\sex{\cfrac{1}{\rho c^2},\rho,1,1},\\ B(U)&=\sex{\ba{cccc} \cfrac{u}{\rho c^2}&1&0&0\\ 1&\rho u&0&0\\ 0&0&u&0\\ 0&0&0&u \ea},\\ C(U)&=(0,\rho F,-f(\rho,p,Z)Z,-\bar k(\rho,p,Z)Z)^T. \eea \eeex$$ 故一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组.
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构的更多相关文章
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...
- [物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式
试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p ...
- [物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解
考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1> ...
- [物理学与PDEs]第2章习题7 一维不可压理想流体的求解
设有以 $x$ 轴为轴向的等轴截面管道, 其中充满着沿 $x$ 方向流动的不可压缩的理想流体, 在每一横截面上流体的状态相同, 且 $p=p(x)$. 若已知 $p(0) =p_1$, $p(L)=p ...
- [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组
试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
随机推荐
- IDEA包名显示设置
项目结构视图右上角那个齿轮 选择[Compact Empty Middle Packages],包会合并显示 [Hide Empty Middle Packages]去掉前面的√,不分层级显示
- springboot项目屏蔽mq或者mongodb的监控日志输出
最近写项目,用的是springboot,其中用到了rabbitmq和mongodb,配置完成 项目启动后,会输出如下日志: mongodb和mq的检测,会一直打印日志,这样会影响开发人员的测试. 如何 ...
- RabbitMQ基本示例,轮询机制,no_ack作用
一.RabbitMQ简介: ''' RabbitMQ就是消息队列 之前不是学了Queue了吗,都是队列还学RabbitMQ干嘛? 干的事情是一样的 Python的Queue有两个, 一个线程Queue ...
- socketServer并发处理socket
socketserver简单介绍 ''' socketserver:是对socket的封装,实现并发处理 前两个TCP,UDP常用,后两个不常用 ''' import socketserver soc ...
- django 模型层(2)
Django 模型层(2) 多表操作---模型之间的关系 1 一对一:作者----作者详细信息 2 一对多:书籍----出版社 3 多对多:书籍----作者 一 创建模型(主键(id)自动创建) 没 ...
- springboot use
https://github.com/ityouknow/spring-boot-examples http://www.ityouknow.com/springboot/2017/06/26/spr ...
- 详解vuex结合localstorage动态监听storage的变化
这篇文章主要介绍了详解vuex结合localstorage动态监听storage的变化,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 需求:不同组件间共用同一数据,当一个 ...
- 【转】VUE 爬坑之旅-- 如何对公共JS,CSS进行统一管理,全局调用
原文:https://blog.csdn.net/zgh0711/article/details/78664262 vue 中,将页面分为了各个组件,我们写好组件,就可以将这个组件运用到其他各个页面中 ...
- Foundation框架 - 结构体
一.基础知识 如果要想使用 Foundation 框架的数据类型,那么包含它的主头文件就可以了.即 #import <Foundation/Foundation.h> 补充: Core F ...
- 领域驱动设计系列文章(2)——浅析VO、DTO、DO、PO的概念、区别和用处
本篇文章主要讨论一下我们经常会用到的一些对象:VO.DTO.DO和PO. 由于不同的项目和开发人员有不同的命名习惯,这里我首先对上述的概念进行一个简单描述,名字只是个标识,我们重点关注其概念: 概念: ...