[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组.
证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0. \eex$$ 令 $U=(p,u,S,Z)^T$, 则 (3. 10)-(3. 13) 可化为 $$\bex A(U)\cfrac{\p U}{\p t}+B(U)\cfrac{\p U}{\p x}=C(U), \eex$$ 其中 $$\beex \bea A(U)&=\diag\sex{\cfrac{1}{\rho c^2},\rho,1,1},\\ B(U)&=\sex{\ba{cccc} \cfrac{u}{\rho c^2}&1&0&0\\ 1&\rho u&0&0\\ 0&0&u&0\\ 0&0&0&u \ea},\\ C(U)&=(0,\rho F,-f(\rho,p,Z)Z,-\bar k(\rho,p,Z)Z)^T. \eea \eeex$$ 故一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组.
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构的更多相关文章
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...
- [物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式
试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p ...
- [物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解
考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1> ...
- [物理学与PDEs]第2章习题7 一维不可压理想流体的求解
设有以 $x$ 轴为轴向的等轴截面管道, 其中充满着沿 $x$ 方向流动的不可压缩的理想流体, 在每一横截面上流体的状态相同, 且 $p=p(x)$. 若已知 $p(0) =p_1$, $p(L)=p ...
- [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组
试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
随机推荐
- 7 Best Free RAR Password Unlocker Software For Windows
Here is the list of Best Free RAR Password Unlocker Software for Windows. These software run differe ...
- [LeetCode] 4. 寻找两个有序数组的中位数
题目链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/ 题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 ...
- spring boot拦截器中获取request post请求中的参数(转)
文章转自 https://www.jianshu.com/p/69c6fba08c92
- Docker Selenium
SeleniumHQ官方项目:https://github.com/seleniumHQ/docker-selenium 项目目前快速迭代中. Docker 一般叫docker容器,一个可爱的鲸鱼,上 ...
- Hexo + GitEE 搭建、备份、恢复、多终端
Hexo 是一个快速.简洁且高效的博客框架.Hexo 使用 Markdown(或其他渲染引擎)解析文章,在几秒内,即可利用靓丽的主题生成静态网页. Hexo 是使用的比较多的博客框架了,我也尝试自己搭 ...
- RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your c
Error Msg: Traceback (most recent call last): File "<string>", line 1, in <module ...
- hMailServer安装汉化方法
https://www.hmailserver.org/viewtopic.php?f=5&t=13
- ES 应用
1. ES的不同之处: 全文检索.处理同义词.通过相关性给文档评分, 从同样的数据中生成分析与聚合数据, 实时大型批处理. 安装es与kibana 1.下载:https://www.elastic ...
- 我遇到的Spring的@Value注解失效问题
项目使用的是SSM体系,spring的配置如下,配置没问题,因为我发现其他文件中的@Value可以使用,只有一处@Value失效了. spring-servlet.xml <?xml versi ...
- OpenCV__cv::Mat::step
step[0]是矩阵中一行元素的字节数 step[1]是矩阵中一个元素的字节数(elemSize) step1 = step / elemSize1,elemSize1是元素的每个通道所占的字节数 s ...