https://nanti.jisuanke.com/t/31447

题意

一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间

分析

最大流不太会。。

贪心做法:

考虑两个集合A和B,A为L<=d[i]<=R,B为d[i]>R

枚举每个边

1.如果u和v都在B集合,直接删掉
2.如果u和v都在A集合,无所谓
3.如果u在B,v在A,并且v可删边即d[v]>L
4.如果u在A,v在B,并且u可删边即d[u]>L

最后枚举N+M个点判断是否在[L,R]之间

正解是有汇源上下界网络流,待补

#include<bits/stdc++.h>
using namespace std; const int maxn=; int main()
{
int N,M,K,L,R,o=,u[maxn],v[maxn],d[maxn];
while(scanf("%d%d%d",&N,&M,&K)!=EOF)
{
memset(d,,sizeof d);
scanf("%d%d",&L,&R);
int sum=,flag=;
for(int i=;i<K;i++)
{
scanf("%d%d",&u[i],&v[i]);v[i]+=N;
d[u[i]]++,d[v[i]]++;
}
for(int i=;i<K;i++)
{
int uu=u[i],vv=v[i];
if(d[uu]>R&&d[vv]>R)d[uu]--,d[vv]--;
else if(L<=d[uu]&&d[uu]<=R&&L<=d[vv]&&d[vv]<=R)continue;
else if(L+<=d[uu]&&d[uu]<=R&&d[vv]>R)d[uu]--,d[vv]--;
else if(d[uu]>R&&L+<=d[vv]&&d[vv]<=R)d[uu]--,d[vv]--;
}
for(int i=;i<=N+M;i++)if(d[i]<L||d[i]>R)flag=;
printf("Case %d: %s\n",o++,flag?"Yes":"No");
}
return ;
}

ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (贪心或有源汇上下界网络流)

    "Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

  3. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (上下界网络流)

    正解: #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN=1 ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph(有源上下界最大流 模板)

    关于有源上下界最大流: https://blog.csdn.net/regina8023/article/details/45815023 #include<cstdio> #includ ...

  5. Fantastic Graph 2018 沈阳赛区网络预赛 F题

    题意: 二分图 有k条边,我们去选择其中的几条 每选中一条那么此条边的u 和 v的度数就+1,最后使得所有点的度数都在[l, r]这个区间内 , 这就相当于 边流入1,流出1,最后使流量平衡 解析: ...

  6. ACM-ICPC 2018 沈阳赛区网络预赛-D:Made In Heaven(K短路+A*模板)

    Made In Heaven One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. ...

  7. 图上两点之间的第k最短路径的长度 ACM-ICPC 2018 沈阳赛区网络预赛 D. Made In Heaven

    131072K   One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. Howe ...

  8. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  9. ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number

    Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...

随机推荐

  1. 第五篇Scrum冲刺博客

    一.Daily Scrum Meeting照片 二.每个人的工作 成员 ItemID 已完成工作 明天计划完成的工作 遇到的困难 张鸿 o1 整合界面至游戏中 将其他剩余功能进行整合 游戏状态的切换 ...

  2. MySQL随笔(1)

    mysql是一种关系型数据库,和SQL ,oracle一样是较为常用的关系型数据库,属于oracle旗下的产品,在web应用方面,MySQL是最好的RDBMS(relational database ...

  3. sqlsever存储过程配合代理作业自动定时建表

    1.自动建表存储过程 USE [ThreeToOne] GO /****** Object:  StoredProcedure [dbo].[WTO_CreateTable_ScanDoXXX]    ...

  4. anaconda的scikit-learn报错It seems that scikit-learn has not been built

    我们在导入sklearn时往往会报错. import sklearn Traceback (most recent call last): File "<stdin>" ...

  5. 数据库升级到mysql5.7出现的1067 - Invalid default value for '字段名' (docker版)

    docker run -d --name xxx mysql:5.7 docker container cp xxx:/etc/mysql/mysql.conf.d .   // 取出mysql中的配 ...

  6. zabbix-agent(zabbix-proxy)配置

    PidFile=/var/run/zabbix/zabbix_agentd.pidLogFile=/var/log/zabbix/zabbix_agentd.logLogFileSize=30Serv ...

  7. Ubuntu server 16.04的安装 以及配置(服务器版)

    1.在电脑上下载最新版本的Ubuntu服务器ISO映像,刻录到CD或创建一个可启动的USB盘. 2.视情况而定,进入到服务器的boot界面,把cd或者usb设置为启动第一项 3.开始安装   1)Ub ...

  8. Recovering Low-Rank Matrices From Few Coefficients In Any Basis

    目录 引 主要结果 定理2,3 定理4 直观解释 Recovering Low-Rank Matrices From Few Coefficients In Any Basis-David Gross ...

  9. 通过java代码执行Linux命令查询声卡和显卡 型号

    package test; import java.io.BufferedReader; import java.io.InputStreamReader; public class ExcuteLi ...

  10. selenium中隐式等待和显示等待的区别

    Selenium显示等待和隐式等待的区别1.selenium的显示等待原理:显示等待,就是明确的要等到某个元素的出现或者是某个元素的可点击等条件,等不到,就一直等,除非在规定的时间之内都没找到,那么久 ...