目录

先来证明下lemma: 图上2点间最小边权最大的路径一定在MST上

感性理解下:

每次kruskal algo都连接最大的不成环边

此时有2个未联通的联通块被连起来.

那么考虑u, v两点的联通块 : 它们并起来时选的边最大. (将比这条边大的边加入生成树不能使得u,v联通)

这个思想是kruskal重构树的基础(每个联通块选取一个代表点)

sb题, 但是做的噎屎了, 花了1.5h

我还是应该熟悉一下 最小生成树, 树上倍增和并查集

2个sb错误:

  1. 见code l58
  2. 并查集没初始化

code

//file headers start
#include<bits/stdc++.h>
using namespace std; #define rep(i, _st, _ed) for(register int i = (_st); i <= (_ed); ++i) int read(){
int f = 1, ans = 0; char c = getchar();
while(!isdigit(c)) {
if(c == '-') f = -1;
c = getchar();
}
while(isdigit(c)) {
ans = ans * 10 + c - '0';
c = getchar();
}
return ans * f;
} void put(int num) { printf("%d\n", num); }
void testread() { while(1) { int k = read(); put(k); if(!k) break;}}
const int maxn = 10005, maxm = 50005;
struct graph{
int v, nxt, w;
}edge[maxm*2];
int head[maxn], n, m;
void adde(int u, int v, int w){
static int cnt = 0;
edge[++cnt].v = v, edge[cnt].w = w;
edge[cnt].nxt = head[u], head[u] = cnt;
}
//file headers end
struct ee{
int u, v, w;
bool operator<(const ee &rhs)const{return w>rhs.w;}
}e[maxm];
int fa[maxn];
int find(int u) {return (fa[u]==u)?u:fa[u] = find(fa[u]);}
int dep[maxn], f[21][maxn], vis[maxn], d[21][maxn];
void dfs(int u, int fa){
dep[u] = dep[fa]+1, vis[u] = 1;
f[0][u] = fa;
for(int i = head[u]; i; i = edge[i].nxt){
if(edge[i].v!=fa)dfs(edge[i].v, u), d[0][edge[i].v] = edge[i].w;
}
}
int lcapth(int u, int v){
int ans = 1e9;
if(dep[u] < dep[v]) swap(u, v);
int i = 20;
for(i = 20; i >= 0; i--)
if(dep[f[i][u]] >= dep[v]) ans = min(ans, d[i][u]), u = f[i][u];
if(u == v) return ans;
for(i = 20; i >= 0; i--){
if(f[i][u] != f[i][v] ) { //omg 这里是f[i][u]不是dep[f[i][u]]
ans = min(ans, d[i][u]), ans = min(ans, d[i][v]);
u = f[i][u], v = f[i][v];
}
}
return min(ans, min(d[0][u], d[0][v]));
}
signed main(){
//fileop("test");
n = read(), m = read();
rep(i, 1, m) {
int u = read(), v = read(), w = read();
e[i].u = u, e[i].v = v, e[i].w = w;
}
sort(e+1, e+m+1);
rep(i, 1, n) fa[i] = i; //don't forget initialize bcj!!!
rep(i, 1, m){
if(find(e[i].v) != find(e[i].u)){
adde(e[i].u, e[i].v, e[i].w), adde(e[i].v, e[i].u, e[i].w);
fa[find(e[i].v)] = find(e[i].u);
//printf("%d %d\n", e[i].u, e[i].v);
}
}
rep(i, 1, n) if(vis[i] == 0) dfs(i, 0), f[0][i] = i, d[0][i] = 1e9; //root should form self loop
rep(i, 1, 20)rep(j, 1, n) f[i][j] = f[i-1][f[i-1][j]], d[i][j] = min(d[i-1][j], d[i-1][f[i-1][j] ]);
int q = read();
while(q--){
int u = read(), v = read();
if(find(u) == find(v)) put(lcapth(u, v));
else put(-1);
}
return 0;
}
/*
5 7
4 3 4440
3 1 22348
1 3 28368
2 4 25086
5 3 6991
4 3 10638
3 1 11106
4
4 5
1 3
5 4
2 5 */

NOIP2013 D1T3 货车运输 zz耻辱记的更多相关文章

  1. NOIP2013 D1T3 货车运输

    [NOIP2013T3]货车运输 背景 noip2013day1 描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重 量限制,简称限重.现在有 q 辆货 ...

  2. NOIP2013 D1T3 货车运输 倍增LCA OR 并查集按秩合并

    思路: Kruskal求最大生成树+倍增LCA // by SiriusRen #include <cstdio> #include <cstring> #include &l ...

  3. xsy 2018 【NOIP2013】货车运输

    [NOIP2013]货车运输 Description A 国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有q辆货车在运输货物,司机们想知道每辆车在不超 ...

  4. 【NOIP2013】货车运输

    感觉这题挺水的……真的挺水的…… 原题: A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车 ...

  5. 【CJOJ1090】【洛谷1967】【NOIP2013】货车运输

    题面 Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆 ...

  6. 【NOIP2013】货车运输 最大生成树+LCA

    题目描述 AA国有nn座城市,编号从 1到n,城市之间有m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重 ...

  7. $Noip2013/Luogu1967$ 货车运输 最大生成树+倍增$lca$

    $Luogu$ $Sol$ 首先当然是构建一棵最大生成树,然后对于一辆货车的起点和终点倍增跑$lca$更新答案就好.记得预处理倍增的时候不仅要处理走了$2^i$步后是那个点,还有这中间经过的路径权值的 ...

  8. [NOIP2013/Codevs3287]货车运输-最小[大]生成树-树上倍增

    Problem 树上倍增 题目大意 给出一个图,给出若干个点对u,v,求u,v的一条路径,该路径上最小的边权值最大. Solution 看到这个题第一反应是图论.. 然而,任意路径最小的边权值最大,如 ...

  9. 【NOIP2013】货车运输 最大生成树+倍增

    题目大意:给你一张n个点m条边的图,有q次询问,每次让你找出一条从x至y的路径,使得路径上经过的边的最小值最大,输出这个最大的最小值. 显然,经过的路径必然在这张图的最大生成树上. 我们求出这个图的最 ...

随机推荐

  1. redis---------AOF文件异常导致的redis无法载入

    AOF损坏时的对策1.若在写AOF文件时Server崩溃则可能导致AOF文件损坏而不能被Redis载入.可通过如下步骤修复: 创建一个AOF文件的备份: cp appendonly.aof appen ...

  2. SimpleDateFormat 线程不安全及解决方案

    SimpleDateFormat定义 SimpleDateFormat 是一个以与语言环境有关的方式来格式化和解析日期的具体类.它允许进行格式化(日期 -> 文本).解析(文本 -> 日期 ...

  3. 新装的SSMS一打开就显示VS许可证过期,但VS又运行正常,解决方法。

    1.出现问题如下图: 2.解决方法 打开控制面板->程序卸载->找到Microsoft Visual Studio *** Shell(****),右击-修复. 3.修复好了,然后重启电脑 ...

  4. JavaScript之Map对象

    前言 工欲善其事,必先利其器.这是一款以前在前端项目中没有使用过的.有趣的对象,咱来看看如何使用~ 并非arrayObj.map(function) //arrayObj.map与arrayObj.f ...

  5. vue组件创建的三种方式

    1.使用Vue.extend创建全局的Vue组件 //1.1 使用vue.extend创建组件 var com1 = Vue.extend({ //通过template属性指定组件要展示的html结构 ...

  6. Mysql_存储过程

    1.navicat新建存储过程 选择 过程 增加输入输出参数(若是无参,直接点击完成) 完成后代码如下: CREATE DEFINER = CURRENT_USER PROCEDURE `kxy_pr ...

  7. ruban后台项目启动。进入断点

    eclipse debug启动 进入断点显示-------------HikariPool-1 - Starting... 原因是 eclipse和tomcat的交互而产生的,在以debug模式启动t ...

  8. 使用 “mini-css-extract-plugin” 提取css到单独的文件

    一.前言 我们在使用webpack构建工具的时候,通过style-loader,可以把解析出来的css通过js插入内部样式表的方式到页面中,插入的结果如下: <style> .wrappe ...

  9. [转] 图解Seq2Seq模型、RNN结构、Encoder-Decoder模型 到 Attention

    from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to ...

  10. tftp--实现服务器与客户端的下载与上传【转】

    转自:https://blog.csdn.net/xiaopangzi313/article/details/9122975 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...