【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D

PROBLEM

时空裂隙

SOLUTION

楠神口胡算法我来实现系列

从小到大枚举边权,对于当前的权值,在当前的图找出所有等于该权值的边,把这些边的顶点用其在并查集中的代表元(即fa[x])替换,然后建图,求所建图的桥边。求完之后把每条边的两个顶点合并(缩点),然后枚举下一个权值。最后统计桥边数量和就是答案。

CODE

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 2e5 + 5; struct edge {
int v, w, nex;
} ed[MAXN * 2]; int head[MAXN], tot; void addedge(int u, int v,int w) {
tot++;
ed[tot].v = v;
ed[tot].w = w;
ed[tot].nex = head[u];
head[u] = tot;
} set<int> ss; struct data{
int ind,w;
}eg[MAXN*2]; bool cmp(data a,data b){
return a.w<b.w;
} int n,m; bool bridge[MAXN*2];
int dfn[MAXN],low[MAXN],num;
vector<pair<int,int>> g[MAXN];
set<int> nd; int fa[MAXN]; int DjsGet(int x){
if(x==fa[x])return x;
return fa[x] = DjsGet(fa[x]);
} void tarjan(int x,int in_edge){
dfn[x] = low[x] = ++num;
for(auto ver:g[x]){
int y = ver.first;
int i = ver.second;
if(!dfn[y]){
tarjan(y,i);
low[x] = min(low[x],low[y]);
if(low[y]>dfn[x]){
bridge[i] = bridge[i^1] = true;
}
}
else if(i!=(in_edge^1))
low[x] = min(low[x],dfn[y]);
}
} int main() {
scanf("%d%d%*d",&n,&m);
tot = 1;
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
ss.insert(w);
eg[i]= {i*2,w};
}
sort(eg+1,eg+m+1,cmp);//边按权值从小到大排序
for(int i = 1;i<=n;i++)fa[i] = i;
int pos = 1;
for(auto curval:ss){
int pre = pos;
//建子图
for(pos;eg[pos].w<=curval&&pos<=m;pos++){
int ind = eg[pos].ind;
int x = ed[ind^1].v,y = ed[ind].v;
int fx = DjsGet(x);
int fy = DjsGet(y);
if(fx==fy)continue;
g[fx].push_back(make_pair(fy,ind));
g[fy].push_back(make_pair(fx,ind^1));
nd.insert(fx);
nd.insert(fy);
}
//求桥
for(auto i:nd){
if(!dfn[i])tarjan(i,0);
}
//init
for(auto i:nd){
dfn[i] = low[i] = 0;
g[i].clear();
}
num = 0;
nd.clear();
//缩点
for(int i= pre;i<pos;i++){
int ind = eg[i].ind;
int x = ed[ind^1].v,y = ed[ind].v;
int fx = DjsGet(x);
int fy = DjsGet(y);
if(fx==fy)continue;
fa[fx] = fy;
}
}
int ans = 0;
for(int i = 2;i<=tot;i+=2){
if(bridge[i])ans++;
}
printf("%d\n",ans);
return 0;
}

【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D的更多相关文章

  1. POJ 3694 Network(并查集缩点 + 朴素的LCA + 无向图求桥)题解

    题意:给你一个无向图,有q次操作,每次连接两个点,问你每次操作后有几个桥 思路:我们先用tarjan求出所有的桥,同时我们可以用并查集缩点,fa表示缩点后的编号,还要记录每个节点父节点pre.我们知道 ...

  2. UVA 796 Critical Links(无向图求桥)

    题目大意:给你一个网络要求这里面的桥. 输入数据: n 个点 点的编号  (与这个点相连的点的个数m)  依次是m个点的   输入到文件结束. 桥输出的时候需要排序   知识汇总: 桥:   无向连通 ...

  3. UVA 796 Critical Links(模板题)(无向图求桥)

    <题目链接> 题目大意: 无向连通图求桥,并将桥按顺序输出. 解题分析: 无向图求桥的模板题,下面用了kuangbin的模板. #include <cstdio> #inclu ...

  4. HDU 4738--Caocao's Bridges(重边无向图求桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 求1+2+3...+n 牛客网 剑指Offer

    求1+2+3...+n 牛客网 剑指Offer 题目描述 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). ...

  6. BestCoder冠军赛 - 1009 Exploration 【Tarjan+并查集缩点】

    [题意] 给一个图,这个图中既有有向边,又有无向边,每条边只能走一次,问图中是否存在环. 最多10^6个点,10^6个无向边,10^6个有向边 [题解] 因为既有有向边又有无向边,所以不能单纯的用ta ...

  7. POJ3694:Network(并查集+缩点+lca)

    Network Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 13172   Accepted: 4774 题目链接:htt ...

  8. 【BFS】【并查集】【Tarjan】【LCA】Gym - 101173H - Hangar Hurdles

    给你一张地图,给你q次询问,每次问你从A点到B点,最大能移动多大的箱子. 把每个点所能容纳的最大箱子求出来(BFS,八连通,一开始将所有边界点和障碍点入队).然后从大到小排序.然后用并查集将相邻(四联 ...

  9. hdu1811 拓扑排序+并查集缩点

    /*给定两个点之间的三种关系 = < >如果是=就将两点放到同一个集合里进行缩点 离线处理所有关系,先用并查集将等于关系缩成一个点 */ #include<bits/stdc++.h ...

随机推荐

  1. Fiddler--AutoResponder

    AutoResponder支持创建规则,可以在响应请求时自动触发,常见例子是返回之前捕捉的响应,而不需要访问服务器. 通俗点讲,就是它能在不访问服务器的情况下,使发送的请求得到自己设置的响应. 下图是 ...

  2. SpringBoot系列: SpringBoot Web项目中使用Shiro

    注意点有:1. 不要启用 spring-boot-devtools, 如果启用 devtools 后, 不管是热启动还是手工重启, devtools总是试图重新恢复之前的session数据, 很有可能 ...

  3. SSH HTTP代理

    SSH 连接 参照https://stackoverflow.com/questions/19161960/connect-with-ssh-through-a-proxy 若要使用goflyway连 ...

  4. 我的 Erdos 数是 4

    我的 Erdos 数是 4. 呵呵. 图书馆开通了一个月的 mathscinet 数据库查询. 本来想买个 pde 的最新进展, 结果不能查询, 就算了.

  5. Linux中执行C++程序

    参考:https://blog.csdn.net/qq_31125955/article/details/79343498 https://blog.csdn.net/weixin_35477207/ ...

  6. 迅为IMX6开发板真实产品案例分享-专为研发用芯选择

    迅为IMX6开发板: Android4.4系统 Linux + Qt5.7系统 Ubuntu12.04系统 部分真实案例:HMI:3D打印机:医疗设备:工控机:触控一体机:车载终端 核心板兼容:IMX ...

  7. Spring系列(三) Bean装配的高级技术

    profile 不同于maven的profile, spring的profile不需要重新打包, 同一个版本的包文件可以部署在不同环境的服务器上, 只需要激活对应的profile就可以切换到对应的环境 ...

  8. workqueue --最清晰的讲解【转】

    转自:https://www.cnblogs.com/zxc2man/p/6604290.html 带你入门: 1.INIT_WORK(struct work_struct *work, void ( ...

  9. C++设计模式——适配器模式

    生活中的适配器 买笔记本电脑,买手机时,都有一个电源适配器,电源适配器又叫外置电源,是小型便携式电子设备及电子电器的供电电压变换设备,常见于手机,笔记本电脑上.它的作用是将家里的220V高电压转换成这 ...

  10. 【原创】大叔经验分享(4)Yarn ResourceManager页面如何实现主被自动切换

    hdfs.yarn.hbase这些组件的master支持多个,实现自动主备切换,其中hdfs.hbase无论访问主master或者备master都可以正常访问页面,但是yarn比较特别,只有主mast ...