Phone List
Time Limit: 1 Sec Memory Limit: 128 Mb Submitted: 140 Solved: 35
Description
Given a list of phone numbers, determine if it is consistent in the sense that no number is the prefix of another. Let’s say the phone catalogue listed these numbers:
- Emergency 911
- Alice 97 625 999
- Bob 91 12 54 26
In this case, it’s not possible to call Bob, because the central would direct your call to the emergency line as soon as you had dialled the first three digits of Bob’s phone number. So this list would not be consistent.
Input
The first line of input gives a single integer, 1<=t<=40, the number of test cases. Each test case starts with n, the number of phone numbers, on a separate line, 1<=n<=10000. Then follows n lines with one unique phone number on each line. A phone number is a sequence of at most ten digits.
Output
For each test case, output “YES” if the list is consistent, or “NO” otherwise.
Sample Input
2
3
911
97625999
91125426
5
113
12340
123440
12345
98346
Sample Output
NO
YES
题意:查询n个字符串,是否存在一个字符串是其他字符串的前缀。
秒想到字典树,撸模版AC了,然后和队友交流,学长说我写的太复杂了,直接用set写就行了。我后面试这写了一下,但是一直超时,各种优化实在出不来,问了下学长,了解了新操作,涨知识了了。

第一个是set写的,下面这个是字典树写的,set这个很卡时间,数据再强一点也许就卡了。
然后再HDU上提交,HDU把内存卡30M了,所以普通的字典树内存可能不够,就改进写成了树状数组(静态字典树),内存就被压缩到了6.7M,也能过了;
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAh8AAABfCAIAAADH+DLDAAAgAElEQVR4nO29a3Mc15UtWDF/qiIqKrrnL/jDfLhm8U2p53sLkghKNxwkYFvutmbiSiTtjntnTBCyr2WREG05jB5LIEBBIkiRtrvdDVZVZr1Btu2hSKHyUZDtDt0PK/eqlZmFQoF4sFJARgUCKGSePGfvdfbr7LNPLgzDMAyDIPA8L7ArDEPf9/G97/u9Xo8/wzDsdrt8pNvtep7X6/X0kSAIcA//9DwPLaDB9fV1/Bcv9X3f8zz8HtrleR7epT3hW9B+r9fDq/kudBKv0+H0er3HT576vo/H0Th+we/8JQzDjY0Nz/M2NjbYCNvkELTbeBAt4/Fer9e1a2Njgz3sdrtosNfrbWxsoBF8if+muYBf8HaMGq9DT0BqdkCpzV9IW44Cf3K8eBakVu6DtniEHOc37OfjJ0/5dv48OLjy7coQrh4/eTr+uNIpkMYVhpBpXD1+8jTruEpzQXGVIyyUkRgeQUk+gWr8Be/TTpAivC0NjsR/fd/H8Pgi/NLr9dAr/MlGtAOcDGgHrGX7IBY5ASHIaUb+kRx44xdffME3BiIclWFsU/8kDtAgnl1fX8c9CnGQTh8nefH7+vp6eqR8lqDhEAg4BaXONB2L0p9DU+4oJTlVOEyAmFLJ930gjPNNJcVBwBXxkyFcYS6MOa4Ip4G4grGYaVzR3s0urjCEzeRVDsRK6GSyU3vZ7XYxHryAlOVQldxEA9uhoMEAEhRng4o5HQYBwYvThi1TmSfAjZ+cUSr1aDUojIIgwOv4dlCJ35ANuEhxnaXACgauk5PsT5CLvQrMbGTPdaoTRoQarvX1ddpBmKi+mJl+3LrkN8qLBA3DMEQ7tD05lsBMGLyRhOWI8POA4IqYyRCuKNfGGVcY/ma4whAyjStMnEzjCpblZvIqBx2FP5QfpBdhpBc5odThgKmEFYiETvCcokDkpb9n3np6RMSHTo/QPGUaFJzJwSDLS8eoQwjMZiG/grg0YQ8VLrh0JoRmlCk+SNIwDNExut7EH7r9+MlTspVdPTi4UhpmBVf048cZV6HJ6IG4AuoyjavHT55mHVcM7g2UVzlf1C9+4pXgHIcdiH0BiiM8B+apMiTISE1FdmKEyqFAdCP/VKLo2HxzSNkajYXQbBN+iS5Bzfom7wLzlBO4J3FVh3M4iam4vr5Oj17vYa+0TfzOuYRXJOZSAv2hxWoVW2xccUYiKOx8sRm1h5jYX375JSDC4fO/OgqlPKeN3qBOoQqUA4IrFb5ZwRWEwpjjin0eiCtM50zjSle/MoorjVuk5VWO5E6wU4fHx5TEHFIomlmRx4FpX8lR9cQDia4SxOy0nwrXcsz6Fg0U8hdCxDMnLgGdhEsbiO7VxxOk0O8TpCdllQ0KCB01Ca6TlkQAGjB2WHkkApHK1hAuwOOIZngSbQjFAuK4aPr5Jk3UelL44gLE0RNyZ2NjA6JKJxKvg4Ar0idDuILhP+a4gpzaDFcaVsoorrhgmV1cUccPlFc53kcnjoAgdPgwoaDc0s4pdBSIgfi/JD3eRT7RJccj0Ni4yIBQTCpFIScJo4cEBGcChCBBwMGyD4qJxATgn6FFOTE6GESMzOLPxFxSOJLZnCTkKIlGftMr14tDS8Cr1+ux/6AJCQ6iJVZBdLpqy6QMRQPbDyR2oaSj2tahHRxceWZ4ZghXFM3jjCsSaiCuEFbKNK6g4zONK0bGBsqrnPI7MC2EwSeUdiB+qCc2Ed8NK48uKilCjurNZBLZzO8ZZOyJ556ABXHPvinjyU5izjd7TWdRmpp+6vLkoo1Gnq2vr+vo1M4FEUheokTBQWagEYQUQnOQ2bK+haglPnStVV/KSZUGCklHUiiheDP7oJ1XwODC+qo+ggzOA4KrhIDIBK5gEIw5rvDUZrhSqzmjuIKCzDSuYKZsJq9yz/aOwFQ6X6mt+6bKQvHyQskWD0RX0wRQHPM2EpQzhG8hfPkKkptDUGYzyUT7AGzRoUObhAvRpvMHN5PQxCV7S6xQtvIb/qkA3SPs7ptMZN7IzrGbRVzx/gzhipGxccbVcJkI0ZxpXCUykrOIKy5m83vFVY5d9MXS5JC8+OKVAoVv5f2eOKq+xP7AEl1NAlyUiGkfTckdyIqWJ9YWXqEpg4lXawtUs3oD+0xRqN3mS3EDnWXf/FZFVWDetNKKqp5gVVp5lmGi81Bpjpd2LWEDr8A3Ou3xFn0vGwniwtGzBBs+SGKSYrAQdb6xTeJEQ/CaLqFkPyC48m2xIUO4evzk6fjjinQYiCtM50zjShOuMoorul8D5VVOyU3e93YjSMcGQ7FreCfpHsq6Hy6OwTcdiG4owzzbTKQTQJ1i/Z6E4H9JEfaHbQZmp2hrNILYSdJKgavESQCLswj/6qVCwNolvjoTiwpqgnHsBwdXOuSs4IpbEccZV8rxNK6YrZRdXCU2umcRV+pBBil5FWUke3YlXhZm37ImAxJO3DhY1ok+aJ9xsSqDTOD61VPFfKGYn1r0pLKFdoyUDMXVZfJPelAcOKe3L6ujSljFBqmR2O9C0h0QXKnkygqudO8X5UIoBvI44EpDOmlcQa5lGldcsMwurpjaPlBe5UIropCABfsaWiYGKaukJ274PtgvHDOVNjW5hj7ThgB5EFoBHAVuuINNIeRlGt+kuLf7yftOpAxin+mb9ghh4UtwlmOhX/zll18aB2umXW7qzFQEJHrI7iGEzenKl/JnzwxMmp/gWtf24vbEeiK1dX3Vixu2BwFX0e/u7IlCMV8oTi0+/00hW+KKc0Fw1V/Z3gauFqcB6fMf7T6uOIqBuEp4zFnEFfe7DMPVOG02SuMKXNhMXuXIHs/2VAeiMAkOkrVrdRqWpuMSc2qRKOn1eoHBLvqcmnVFn4fxjENeBF8gdgFBA373ZN2JMycQHU5oehaWgU6GiU0MkTHoNhonHLlo5qX84oQJRijzYn+CIOhrl1OzbhiGoTsTKZvpj7/8MjSjhu+iOA7FpiAUwjD0vMqVk8V8oZifXtT3sj+8OHwlqWeJN0rJQOwy5ZGCTAeFL32JgPuWL6SofTZc8U7VTD0J7CiXdQ4kcLU4nVbqxROzzq7jCgP3KlehXc4veGHoRkyfvrVnuAp01CpAvxwBV7pU5kmkhTKCryjPnE6TkcTsa5eF3ccVQTIQV9yrPyKuKK9OzFT4iDt7JhrO9OKIuNJrh/JKU/k3xdV+y6vt4YpAGiivcol2lQqJB4RSSxcilnyM3ttMnr4pKNnY2AgCZ8ZkqxPPI9KXBvE53LOALPGkoPctWMGCa4RCEE9fIbLxDZw4mhJsVjmhlFJkcHokjHH+1D4EYrN4XiUSNCevOmhz6dt5M3J933TPhQUHQD81i9vCuHq+sEiDxWVkzOHcKEwvCr84ZM7GUExCpSRJsbGDqkSJolXK023iKrqHEfP0g5y0CfalcUVMLqBLRk8omF3EVUQQ0y4XFv0+W82/3ANcxaIiQTz1iw8m5AhpyM0ivhjCyjX9GfXfCAgo7gOuaCMPxJUa/qPg6uaUzaaTV53oS5NOhWJ+emlEXLEPO5dXyoVNcbXf8mp7uFIFiUtxlWNbvVEX2frGuGOd68vQU7Pl2CKb+6OT0fe1573IRkKgkV5qkU09RP2enQz64x19kc1R7eL7/WDCiVmn2zVHRJy8qu9HBuOp2arvB4GDe07MOr7v93o1PnLiqhMEQTRtTl51nlNSQGIjURC3+kfGVZLI/JOSS3C19eIttctixMrFC3E3OgzD6lU1zE9fdYmrZDzzwqLfB/nUIsYYveL0j50gCByLjC3VkjydvrUHuArILw6Zgqa71Q5WJpGjHX+UnYYL1C6CK9OpU4thGC6dN2B/dCEa+9RSjwDOF05fqfRx1fcbCsV84cxVZ3tJAVqDZBRciS975krFC4KAwUzYAcRVAhUzVeAqws+JWWfBFBUMRFNRZ4Cf0eUV90gMlFfjmWySwBWGoI6R4irHSBlaUeeOjNSm/aqxZGpRSWN29OmZal/Jr6+XZ0221p53gVUQYmO/C/eW1XsLw5C+y4VFv79EP71E+nvezSmbxtEoIoV0Zqbqd7uVGYu6RF2S/7KTYdyv70nYnX3We/gvT4wvJQh1DOFI1nCJmPDl9N4GrmxisBvhzgr3mq3KJa6b581KRW9xwwkELCMaTn/U7VIPnZipoAM3p4rnF7q9Xs0ov4RuRMGWU+9UfX+j9mP6Lhq93DNcDSvcu2Gl5pX+niwaJ8pDcUIRCYHEdiLy9n0XwVXtHfHYTH/jnr7zfXqm6kcS2UzSiPhXHZkR0zfjuEoIsgSuGI8dEVd938X0fSx2Or0IXIGnJ2YqGxsbNoTpBc/T0Z1f8CTyf/pH5fWbNjp3O/KKwb2B8oqs3F95tT1cMWeMr1Bc5fy4E4TBsE/q9OGG7gJNb9eXi1GaC4sBOd0P45x6x7FXsimOlutmelGK+aY52SvOhG2VpkgUJlKakoieBPf5alzkayDmiYrjTQxGM9zijgj+7NvI04uk8/pHUwZi2424oNHtctTC1GI0tGp/PVn7o5YOwYeL1OOgQnFNAlmdI1/4IMEQWtycJXZCC5pT9G8DV1ZsSmlL0cADJAxXoTJrIK4SvotZymeuOoHv+yYWz1x18Cw1uu9XZ08WivlCcfpWAld1Uh7vUplCQ/jCorjy00t7hqthJU98WZbv40qO7mCFq8CO7kCCEKcGiU+2Kgj7uKpcPWlfet5NyN+T79Q9z/MkVBgEgcmH6Zv9DIgzV10MP3rw/EIMV5RWA3EF1I2OqwgPp06fiCLJixcKxfzJqQs2Af1+x07P1oCrRbHzbk31Qw7dvqu6qOiaXtqOvNIhpOWVSvl9lFfbw9XjJ0+HHAmT68kG1I1Ryoia0j45W/MlH4PuJMBknXBmzXKvSFYfEawyy48veYW7XZ6WajY2nCAg20LT3pqWF8jFp3QeevEyoqHEkXxfwimxUMmSScy+diExQwlwY7zq7vTV1fRS1EMD+vmP9qk8LWe+znOdHgT9NnAlEkFxxc74vuKqb4h5m+BqYSpF9lOzVeIqkXVinxNXHd+PZEr/y1kHi4gaGfMYbDn1TsXzaMVPLYZy5809w5WXaIFEY1qgElBFki/l68PRM5EEln1ciU5Vn8/v6+/I3KR2Wez74snPydma4koX7dO4wobQ0XFljubszFQxXyhemJrOF4onZpfoj3qeNwQV/cjYTMX3fQmE9oK+9JteNKKNIq8wBOWgYoC+yP7Kq+3hintaiTHFVY6qj1HOXjzlg2iLSGOWXT4yCqNu0TaE2jcjwtH1GOKAkiKxkqZCjfPB36WQDl1potAb6nqz/RFdb52ivX5IJ5bXkArpJH0X3/eJ46kls2sk9qUKKUrrjIzKM0gb0DyTrtWNSKgK9pBrhmR6GDe7SG1807X8SxXu9F08CQhsG1eSCaO46sVDOr246+1vHtLp+y4S4j9x1cHwCVeGE2O4Isj7oR5fdQYaocCqijA9v+CJ73Jrz3DV73YwKFSYILi2BneTIOF/qbk1XZjU7orv0seVq37zolr3qniE4NMLnqd+5BBcUUAPxBVX+0bE1SKZJUGt2Vpt1jgVhqEjqEjhqj86IESMib52WdqOvOKe1oHyip3fX3m1PVzpJkL1w/AzR9nBdv24jmUPfIu7RXw6ebVqXVQtUjVjs9eTBb3pJdJIaU1w4xFqTg6esEM+HBkQSNo1lRDbCeIh+MACOP5zqGlfmRHKkO72FmdWFlE4tAjlJ69qEvPJd+q+OkORnWThYAnxBzuzUHqywOuZF6xCStHSs615fMq3pK/t4iq0M5qUKZyffgxXyUyQNK40MqYe5IVF3/d9LkdPfzwcV7dsLdfVbL3YK07NVn1/vTxDD7KfKmnr/3uAq9iCZQpXW1i+YJm/LcvXhDIDhr1eL3QjNYx1F67qB0GgsSPf98tXIvl7Uw3/xWG4Im4H4ipx8vGWuOLCTzWW3+HOSAwz0bE4rvqr+n4/hhZ5ZtQuH21HXmmsPi2vyKD9lVfbw1WiAArnI3DVP9+F1GQrm2cH3qREQw80I5lAUURigVoBtCtZpxwzSUC1D0Kzha5tv/J2knX6LNmBLhdayqnsQA3Q+4kltVRGsmG0NijUthjIFdrF/qs1RwLqT52ffETnPO9JZ51qzru3q1mnHI7CI9HzzXCVzJLvJwhFKOUNH0W4WrwAYbE4DXr6vs/Fg6mlXhiGCZyrdtFlhh7TySwRfw9wNSzrlPYjp7ovhlcoAQ1fZB/7gF8Yl44uAyS2i0Zs7Y866MeOrjpBENC6RxZAJdo3gxVyXz1LEP+83cluDM9mThSl3RJXyhH8fmLW7YcWppfQDju2JLsvLiz6Gxsf03cJw1B9lzAMa++cUbCNKK/0TJC0vOKd+yuvtocrVZBhPAUgRAV+NVvCkTd83kzEtSXtMr6RLVpH5SAV0MHIYdZgx+F72mtKxN5W4Xv1JfWGcDeWhbSHgayfh2OwkdiPqxZ2NUyFWfUYXX/L8P1+LQstifKIuNZX2JHsSG0VPD1b64XJ4HsUcvR0HVE/yBQycYOlaTo90P3jhivWT9wGrvoZyYIr813OL3hi3bubR8a+zS1x8cTfIoLqiiuGuQbiivtdtievTl6txHCVXPgM+/GxPiquuiEjYydna57n0ctJ6M6l7cgrza1IyysqhmCM5RW37AyUVzlyDv/uysYIjpDalY+pglJ2krtqLOs46btxeYAg6G5vy3qfjmpkdTffsk5XGs/u89Zib9CWdU98ySDu6ur3iidcxFaCIGwf3NT7FUYkrAIuwWL+GZiOUc1Em4CRMfZZxf1BwJUyKCu4ors5zrgKRL2lccXN0dnFleZWjD2u+k6e4iqxmzIhr3LBlqt5+75K7A1dzXvmVWKu6nvPtEqsWNS3cPh8hPDVe/gvT/xfnQD6PSeSko53koVkB4HuS2Y9YR2KAbWLhz1waEh94SgUzQcBV6RthnBFd3OccdVLrRIrrphwlV1cJfZIDMHVksTr9gVX5qNPLRp++gmTiquBFROIq1xCEPSeq+elMOoNXZYkA0ZflqQfum/L3b2hy5K+HTG0zwnEux6B1JAjO3NwcMX2M4QrFu8ZZ1z5opPSuGLt1OziSpfEh+PKliG+vbhPuOKW7Y8NV0x/WFRcUbsk+gDK93dTkgeZsFyC7VvEFILheFgu5LdOY76LgA7G8lg9tYgTR+xl2iJ+BlyxGxnCFSvBjDOuVPalccXgXnZxlairOwRXS/GtwQlcpWvqhGHYLxgxtSg3TC8IrgZUej15tdxNbdGbvtXPTppekgWz6X82J3igvMoFcTOhF08dUTR4lmzgi1bXm5UrVJvEHKHGZ/kN/0uqkT2cqJyWnl2B+YA9SQ/nrFCAYthqr6F7icMH8cu3Dq9B11dffYVZ0ZUduZwkZL0aUwcEV7xhOK44TBVhfCP7wKbQw4Ro88XJCO1sFQpBEhaNJIipLNAoMRvXgSRYTElNfiVUiA6E0pw3MHrDUcN+17ekcaXASONKt69lFFeJM9yG4Mq0y9TNFDcXrKBREDCvb3rB8zQL/8RMpb9wcmEBj2vans8a0qdm3TDsl6WwYhN6ksiJWbefc3/+Q2UBIQomRusu4fYzhQgjRWQCWOG+ZwoN8dO5pXy4n/6tb33rfz+84te//W7lq6++6m6SgUbvuLsbGWiZw5W3l/EfvU2fooDT0emXiceVgKEc+EbS0TNIyDiV0cpW73lnNjLtLbu4whBGwVUiFb6PqygjPCrAisRuJNDrTm28dFH0B1PJkT7uxTdvyYatm0bY2L7v/v0nrlQEV734kU657jY31HStbo+SG5hQWPhycQqFYgWEmxtWQVwBksEKi2D7hlViSzlvSBhW0C5fHV5yQbsABumNWqyT6ovBeHBwFeyjwR6O7AjquJQgtLTYNwr3nW9YDi3i3937DYCJPbxZxBWP19wSV6pdYrjarHTNTEUOGVpCmyyLV/H6NW+mlqLBxgtxUpcsGXm5ErOIV0e7U09ccQVXSslut5tT51ppHca9crJcJ1ICsmwkoYQ5ATjNyDBfFiTJIXUMdbIpI/XtxDT7wDcSar6Z2JwknhS/0wlwqF3SF7QL0c/5o/Nc/wVJekBwRedmOK58ibro49qyUph9S2gpFTpcH/ZFCuNxmN7aW11p0I3u/IkW6HuFKUs/MIOayo9v7Eo9kkCcCdyPNhn/Se+VHoirhPhO4IqiObu4otO/Ja5Y8HshjistXZPClaNFPfz45l/b+3UalZBC8WwqnrexUWexCcOVxdkuLGBc9F3K8RrEyq8cHRn6tiQNGRyISaUzjUxl9MP3Y6YNS96S9yA0ZmxCbwcSf1BYk5QwsuhCBrJkR/DxZup/jpabe4ly9azZyKF2SV/ULjqBOaO4o4rIUQf5a48rfj8cV75IW8oj3kO5xttUuySIqaIZz/rxS4WsWsEkl55Gwfv5RlCSBPcl3JTgFB7ncr0G04IgQN1ltq8ie2NjQ49OGIgrDG0zXOnhKBnFVeLYvSG4Ys7YzQSunP4e3hSuuA6/iEHFtEu8kkKv17vZr5Tj9yt4TS1aR/r7XXB/wnehhlZc5ZT0RGog6SKhrFmpBaRZGaSdAjEwDzQxH0IxB3Qu0edVxhNzyjxCiv1R11IxGoorShN7symHVxxql/TFyBgu2p6c5zpFNdHzIOBqS1GemHL7IMo3NjaQ+aqikGNEzpgncTxusyCn2L7SqmebJFTzkXq8n3TQS8dOBgWy6J3GVWjXQFxhCJnGlabDDMfVgmQkJ3C1FK+pw9I1/ZMbE0VuotPz+pUhUbzg429Hf8IXYVm2coSr/im6oJKuu3BoYTw+HFWxRGLc+vp6u912HKeyv5fjOO12u9vtbjzryWD4uTH0pB260gqLMHXSzqF2SV8J7aJhEN+OlCbLOJ2IK52u/K8Kbj4bbHUyWPux991bT45f/9M3fvKHr8fn+PU/fefWk/r/35dBw09wCiU4pnoo4Q+peGJsjWziVkSVoRRtviy0UHTq0dHami8GuwKAjbBZDalFfsZiv+5yGlf0MAbiSoN7I+HKjk2KTgaL40o1AZ/1RjzJUE7t3Ja8YqXqgfLKF7W9lE4dNsXQ65/cmChdQ//jJnr+4QXVLkEYuoPKGr3jRiOVcyimFxNxtpDrNCeuVDffyJkj7dbX1x3H+fzzz//85z/vs/D685///PnnnzuOo/ggdJTiynvCSAPT4AeMQbiKtMsIRwJFmyJ0DrVL+oJ2IZEReqaJygQkL15qMEFn/qnSh2Sn6ExoI53Sj77onZz707VV/0/+X583SXbt+pP/12ur/sm5P6193heRoZ3oHMgqBbUFbfaEiAxlgYHtMHEgjPvxVD+06jjddALi2tj4mBWClZuehXp0hlLs0iPxZVWcOgnjsgpdp2eqSVzR0h+IK62dOgKu+qcysxFWSjz5Tp2j6G8NscXwAZtCjA54kcj3M3ZM8kjyivbuQHmlInuIvPLFZ+L3tM8SinkIriJqTN3cFq5YBcqXFTXiKkfYtdvtzz///DlOs88//7zdbpNhikiOlniimZOg3cC5hDGDEFvOpUPtkr6gXaj41bYKJG0/YTDSXlO5k2Yu5ptujEeQJ5S1cUyJ7956cm3Vf97E2JPrvX/33/j4afCsMlqVzcbGBqzmdIiSPGKGiz4bWKiAcpBPxc4asO1+DEYFYmj7FutjeIDzS0WtDKFvFCdwlXBcErjSI2q2xFUU5zk5UxFc9evwnrxajV7a39UBI31DDgqK1jzM3zp+pUxNJqdic6Fia3kFs2wzeRVsQ/dvpN+4Pd3v9g9D2xau0kfUKK5yPdu5Wq1W//KXvzzHCfaXv/ylWq2q2dLb1R3Ruu7CueSldkQfapf0Be3S22RHNIP4NHD8vdkR/c2f/fHz8D+fNzH25Po8/M8j7/1RcUgt8gw1zShbaW9yFlC7+NvYaR8VP0a1Y3Mu7TStmQrF9PkFr7/8Kyez9VeY7YMDLgEhO3p1+uZ2dtrrat9WuNIDjPu4kirvp2drvY2NDe4CwYI27uyveSDSy50is05Xd9pH8bGpxZHlFXPGBsqr7m5XcEjgyk4NiBFhu7hiwTqdpxxvrmdJ35VK5XlPsa8qlQohQkXt7dLmZybIqxTzxWOFVj/ULumL6y46Z0hzXZxU9eDt9ubnb/zkD8+bEnt4feMnf/AlmkFjnMCmeeiLHwBZoLKDcTPSXymM/4649yuybWUHeNgPD0Qb9yKlIgc+XnXo67xT9X2sM+ejE9ii5CVVVDwviocYcbIPwVUiqXoYrqz/i3FcxUJe04te4rTs6Y9BIt3T3u12fTkoVnOReXja+YVR5RUTEwbKq+7OijWoit07XCUKzyeUWY5gGhPtsndCSuvCkhzkDSs0HGqX9MWM5ISQCmzL8UhCyqaW96wbCQ+CdtkVowrXkI2Eic0ivEhqnVzRUsSpWTfWkyWeFdbr9eLHiMk582GYOAqFjBYhFcWjTsw6A4XUQFxhCKPgKlrawSFvgiurfXLmRJSOtTRVKOZPTU/FNxIuJA6yslWZlPKzUcxURpRXFM3Djarh8krbpM8XWjaHKL89wRUX8AZuUO3XSB4T7UJ8k2RIwRzIIdWuDBQyLql2kC8ZGoHEl8WA8sIw/PLLLw+1S/piJRgNQhLoMITJC0/i+AmUJ7hD4Coi+RMRZyKh2+3utXb5t9+tbPnZu7d/4yd/0KQpT4ouU0+DzkxGYpRSbVtKVYpysoxqGxF/ijnfcpo1JMWdJZGqmF7SRQI559gNw7BXe0cD9zzneDEIQkht+WAVneNiThSa8iSONwRXzCXZElfRkrsdpEtc8TyxmalivlCcmp7OF4onZhaYaoXXca/JQmS8Wy6WhPJAW9x58seNEeUVJNJm8ooDGS6vqIl1HlENQ93uHa643MCuKq5y1JZjol2C+BXa5aWSFnRi6E+SQB/xU2dTUqXEQ90AACAASURBVAlTjfu+fxgZG3hxVR8078WzwJm9o+ZVwuMengXOOC9xqQ4N/xxRu/wf/6W03Z/g+CjaZe/g8Y2f/CGwoAQD6N4zHQ6d9ku8eLauLsYGW2WBR9plqr/q7vu+591U7dJfFl7EX9FJwB9B1jizJ+IK5vxCLFsX0aeTszXFlUIojSvWH9oSV65plwSu+qkK/bDemasuC6jcQoPcJ79kZr55ZmeuVGKHQy/GdeSW8krL16flFdk6XF4FolP3+tDxNK50uSEQPYorx6/GRLuEEiShFaMGglKBc4D888XTJCKx+Ka8pHJWGw3/OtQu6Uv3u9Bfps3F8qBUDCQpLp0bZIGymH8S0PwzkB3Ro/su21UwHObz9V0w3u6Ozysk5fmluoCerUEGEo2k5ZvQRj5t/1Oz5fV1pjP1tctMJaZdlnpBEFiG7vSiGL94ipnN4mFEteJPzFQUVzCoN8MVh7AlriJlYJEx4qpfFZjHVJ+adVmeaypeUKvw7Y/MITDdeeaqG8pLI5/mxKw7orxKRMYS8koHNURekbyJ6embE8MO7AWuWG4AffbiUe4c+Tcm2oWk98UwIb38eOW7BP807Y/kI6FVu9BY5rsAZf9wr/6gi+suoXjrRJsuaHme98UXXwQSqOX91Bl08BN/+hINIEZhjsHs+tqvu1DgMrRNrcBZ7Uvps0AsWcrlQPbeJyLvlAvpOmNqJvOl0W5/rorbGVOe58laveOLdzK1GAb9XSPTN33fX5xGcSq97fxCN+yH9fs5XYqrQFyQNK4Y8d8aV9J/xRUjY645TydmnX7x+ambaHxx0GZ4VVdGsf6q/ojyiukwA+WVToQh8krnI94VSlAxlADAXuAqcbZTGDcmolX9cGzWXbw98FoUjltaAYfaJX0xMpbwWoBgzvO981rwxq+9dtm5dZmgZ5DyWjzbaeGN4LWYRIu2IkL6GwZuMTIGtXFS7qF2WQwCP1nH98yVSn9dxPM820EyvTSa1+JbpuLIuFpiTpriKl4ZhUF4d0aO+O31egP3ySP8FXtpNIpv3xxZXtHpHyivwnHyWjbDFQ9A81K5Ob1eL8fXO44zJvtdEmNW24TcUpb0tkovCW2/CxnjbZ62dKhd0he1S3dQXX0taBGIsxIMTVvqxRfzefUGpS3h9//ysz8+7X3N97uEkvAdpurqq2TRm9UC48IsvhlYV59zoSfJqSodKKYxuWjmV3e/rj53U95KK7whuHr85OnouNLy8mlccfjqHASm57yR6urHDkQZUV6p+7VHaZb+rh6wlsaVClXFEn7PUa21Wq1x2KsfiBtIfU5oeray15ONYCOe16QV+BVAiqfwMCN50MXdlD1ZNSUBVVQRkd09OK/p20tf573637n1RG1PFdwkKcniDT0HPsEmLuQS+Vr7nc5Kb9g5YFYJZqYSiPWa8Hu62z8HzI3XkE9MzCG40qNmR8DVolaySeDKl+I6qil5g9o6FDUqVW2d6fRVZxvyiruOBsorqqLh8kpv06cIIR3druNKnWBlNJrKkTesM/bXv+53Eae//vWvqDNG+TLE21I0ewO8+HA9tvbocYZozphiKGGtHGqX9MU6Y8w54TykIUxckvKhXeCCWmdB3BTln6FFA0yobYCh4H7jcXhi7k/XVv31ja+PB7O+8Z/XVv0Tc39y/+h5I69pc84PjA75tmZJYOsCDFmmAkgFkxcPtUctLExrUIiWODeHM37StYvzVzUEm+31eqwseX5hAK4oGQfiilsRR8UVq3DOVBK4wp8Jb8kXh4Migt9zXL7Ps1KK5xe2J68gkTaTVyqXhsirxJCVid6gHJzdxZW6XwmvMeC6C1tvtVrVanWfayRXq9V2u/3FF18kVHSv12MgMhEw4S9bLmAmCKFqVkHDcuWH2iV9aUYyp19au9D2URb4u3pq1tqT4Lu3nnzzZ3987rWNd+tz5L0/okayyg5KZOKZ1CDau11dGI8lXPhbnZqV2Gmhqp33qzXtj99pbInK3DvEVSjBKM9y6H1xPviL6qEdyitKpIHyKtHzzeSV2tZUS0Hcfdk7XGklGN7M9nP8R3fk3VVkTDe2uypWoJT+NX7hSXk6Tg5JgeubeuSdOkilINHPDhDuXjzO69nGn4Rq9c2s09jat771rVEyUw/a56uvvgrMq1DcB6a2ySaC4YDgKm2yDcQVExpxYRr7EhLBRavTl+C+H9+1h/aH7DLmnzSEtWOeVYJB53UdpSf78vTtHDKFWuJfgZSfSgigrp2CrKKTPCVI0rjinQNxlaifmEVcaTpMRnFFBUmeKq5yfPeu1xz0rQYf1b5yCH9Ck6sTHUjihLertSyhXbpb1YZ73n7C+F6cSIlallprSMXKAcFVuC81B7dVy3Kg0Fepp5ExjjfYopal78vZZRR8lMu+WPoJMarc6cm6DvswEFeqKtK4Ys5YdnGlhTgziitm9JBEiqscBx/GDyDCxa6Ttdq/xPvS+i0UG0G5G0poj2/393jrKdddEv3kT4Wgb6EA0k4fDOOH5BDZNI74JfvALpFbnlTDVgNfDRnadMpjfuOPsKXZ272t8v4mB1sxRqE4Pji4SsNj/HFFlo0zrtjgQFxpRnJGcaWJCRnFVSLEmpBX/d2U/eU7qVET7tbynXnfpK8/8vId+9Dd2bIwzuMLd7J8t9vpBnyFGk2JvumsY1c5x2iSkCmckAn26Sg4hTgi3NyT/Mvu0GVhT3x29V2CIcvCX1NchTtfFt53XDHNb5xxpR1L44qoyy6utNxARnHFNdeB8iqX6VlE1BIfBF+QWiLTKpYJyHq7nVzBF3lxO4h/KkyHz6Lxl840wTabRV9vXCWGnAlcwdIac1wNl86Jwk5ZxFWihFIWcYUhbCavctkaHvugOEhAxLOgoU4b39Ib0i8NxQHnuxJA5IMqa3QeemLHBSPvsB04bTInjomw7IrjneCKd2YIV2TZOOMqLY4VV5zO2cWVpvJnFFe67hKk5FWOwwvieimU3UndeNoP9t/SKunFt18xlsc38UHPrjR1SPGubMgiENldJUpoC1m0gEgOX4wmsllTsxP3841dSUMksHw5p1p7NZA4ZKFynT1nC+Rib7+qZytw2Q1FmM4QlSyhbWFjUxwauMAwC1cISaKDgCsdQlZwxQr844wrUm8grhJbdrKIK81IziiuCCR/kLzKBaJUvTFLUSD/eCeRlFik0rdwbvAR3MMop7amM0Qpzka08zpJSARCUMnqS5k5bZYM9ix772uQUpW51JfdxVUQVz+ZwFXiNIrxxJV2Po2rEVNAxxlXDClnF1e6GyEtr/qnhwVf92Qb+i6kHX4nS0B0tkBq4EsW601MV2VP+hvOlkTHSFLaAjpRCVx9hJ3UtzxDsk2420lceoIQ/3VwcKVkzAqudKfF2OJKH0njijlj2cWVFhjOKK40Zywtr3LkvS/pHJ44vByVJ16eajDPYou8n8PWZ0PztckPfbDb7W5sbHRtm2gQBBsbG/imZ4WjyRiOQRshFXwzYWhfEI6KCd92eAWyJ0DZg+FoGb5e3ItX4PJ+9iQ9RvZZf9eBKKZ1kigIaACSsKSS9kH7jAtYV+rppjA0mzAP+QpCKjBDjCwO4lW4OfCDg6uErMkErhguH2dc6aDSuIJ2yTSuEhMni7hKmOwJeZXTu9l1MpgdIrnTrwy2OtuO49dBevHjncO4XRPuwUYQdeLYpe7zS9gnfIOMx210I5FOyAOCKyIhQ7jSMipjiyt/aNxG03kziitol0zjinN/oLzK8d16TJN2CMNeX1/nONNAVFSR4koLWgf+Do7/4iOBKX8dP/HniQu5IcfpsCIpm+rt+DidUEwhklXjkrw4qRIDJE0SyECDBAdhyvcqLMgR8hj/guNPMmqH+a4EOr3tH//FWkO+GC8HB1e4IVu4omgeZ1z1xC9J44qiObu40s0iGcWVHq+Zllc5PulbeoYq8158uS8Q1aov47DZISpJ5V8gITxFsy9+N6Gpj5CaBH3PUhjZJikYSC6gYkgP6QwlXyUwla6wINsILIWpby4/qaRziXcGZr9oPDoxJ7VBpZsnSRoKFxUECbng25Kj4lhlBLCbmGa+OdSKqlAMFuUUHmc5EPSQCMOUZvsHBFfkYIZwpTstxhZXbHMgrqAgM40rhpWyiytdc03Lqxx7oAgIzVEin4iwBOfIDI5ZO+qLVcJHAsm8pnlC/vl7dpAOfRcyXumrjydIod+TPRyX8kYnJ7/hfwl9sl+J4Ps+6yzt9gFN/exP/snfFYtKN1pJHFSwyQFNVNsktRLha48rX9ZOs4KrxInu44krXgNxpSXPM4orFc0ZxRWAtJm8yj1+8vTwc/g5/Bx+Dj+Hn939HGqXw8/h5/Bz+Dn87P7nULscfg4/h5/Dz+Fn9z+5VqtVq9Xq9XqtVms0GrVardVqtVqter1erVbr9Xqj0Wg0Grit2Wzink6nU6vV2u027q9UKvgXzrV0HKfdbjebTTxSr9fr9TruwW1o3HXdTqeDV6+uruK9juM0Gg3XdavVKjqAp3BoZrPZLJfLruuyJ3gL+9But9vtdsuuRqOBTjqO8/jJUw4Hd9bsajabaLzZbDqO4zgOelKtVlutVrPZXFtbq1ara2trruuiEdd1HcfRIdTrdXzJB9Fyq9V6+PBhp9Mpl8vlcrlSqTx8+BDfo89oEwRBU5VKBTQHMfHGer2ONtH/arVaq9XK5TJ+b7Va7XYbpC6Xy47jsGU0jgfRZ3QSBHQcBz/r9ToGjiGjGxhXq9UCzcFWNALygrDsPMjLrh4EXOnAs4Krx0+ejj+uwJrNcPX4ydOs4+rxk6dZx9XjJ0+HyKvco0ePlHN4Md7d6XQwhlartba2Bpa3220yFf0DREho3NbpdDqdDsGK3j969AjNArLAHxiJl7ZaLYwHv4NnoBFeihd1Op12u12pVACaSqUCquERkhL3g53VahWEwMjRebANvKxWq3gQJK5UKhwpQIOraRduW1tb4yTBSzudDp4CcfAKzMlGo4GugtqEMl5aLpcxjdE+kYo2QS58j3ex82AtuYOWAW6AFaRgr/B7uVxeW1tDz0lD8Boowazg63ABEhQcIOPjJ087nQ6RgLccHFzhl2zhCtplzHEFrbAZrh4/eZp1XD1+8jTruHr85OkQeZVDJ9AEWoF2goJic0QPesP+Qa1BX2EM6Ch1IKmMxh3HgQKk/uRFSwccxT1QrWgB1hPvhAXhui7sDjIA6ET3MCvwDbRLp9NBB3gPO6bkownDmUl2YtZhpDq10GbDLpgtpLuOrt1u6zTmxKPOxwUzBORFb2kDkmt1cQ7QIC0p8JEiAO8C7yAFOFKYLUAeJx5oCyRRwnIsICMagXYBQXjPwcEV+pYtXEEojDmuqtXqEFzBd8k0rjCETOMKAaHN5FVO7Q6Qhs3hX/DIwOa66e1ms/no0aN2uw01lRgw+gdwuOaL4fW4k5qzUqk8ePCACpMoofJH451OZ3V1Ff0EWOGCoWPQ5FT1aApPAdBqYiut0ckE7UA1mDAtixig8y3zdmHprK2t4VkwEkrbcRz0EJ3kqGn+gLDker1ef/jwIbqBn/BJHzx4QOOCcYNKpYJ3NZtN+OY0KhN2DQYOGwTQB3bL5TLxgUf4ODjVtDDFgwcPyuUy5YWyry5hFhCWfjpRdHBwBQpnC1eYC2OOq3K5PARXcL8yjSuI5kzjCkDaTF7l8O5Ezxrmc1GRUkk2Gg1QEDSqWzS2bo4bvgHmqtUqbRm6sVSMGDlB02g0aGfhd/QSF+hej5sn8KYfPHgA/AEWoA5sFseiwIAjutGy+CaGCVJynlDDw5lFV9lDvBF9q5uTSIShw/DQ4QgDrGgQo0NnwDmQF51B3BaAcMSjB7fA/oZFitEO3g7C4kvSx7EgAyeSIhJYRIPoCQmCx2mG4C2KGzjLNYsgY5Jw/hO7BwdXjLRkCFfULuOMK9UraVwhFJFpXEG7ZBpXsCw3k1c5DgwXlK1jcb3V1VW0iwnmWlgQpgq43rSoH20B/k5i1eNrbug3rABGHqBaMVSSjOQAHcE5jrllsVSwk+tjNQsjojXwCbxEa44FFvFfAhHh4Kqt4JEmDTHAYWIAakQ2AFqzyCnCr+whXgfHE6TA2x8+fAh4wXhEC5wzdVn2BAjYDU5R9J+zC0QmQcBEGl8wQPDgo0ePcAM7yWXDpiwhNi005Ji/T2sRdH7w4AHUNrhZs+vg4KphUekM4QosG3NcQd9shiuu6mcXV1g6yjSuVMen5VWusX2ftJHNWAdc6TGMdayurgIoxHTdgsJgASfzeMbQHj95uiuxjoziamxjaENwBXdzzHE1PIb2+MnTrOMKHmSmccV1l4HyKle3FS3qz4alWCS8MNd1Hz58CIrTI2u32wBlU2II7DdVNxBD6tMLxr8qlQpsH4KAjMQr9GYOFYPEG0ECjNOV3DtQjWqWnKb9RYsAcwnoB1bQAeT2ra6uOpZ6WDeDggOkWVSzjBfQkyYSUIKnYGqht8ScopyvJv1bttxKE6klOTk068gCIO/hw4ckBQiOIcCTrVsMwbGwQ9NyDV1LdEEMAW0SOiAauoTMHMzzuplFyqyDgKt2PJs2E7ii1TzOuGpJSkIaV5BrmcYVh5BdXMGD3Exe5aAny+Uyxobf4WGRWHWLGxKLNfNtyZhHjx7VLKeCPMaLCVCQw7HAKH5CdQNGzXg2XtViwXVLP4fOJy+JjIbFPdHPhw8fglgg4n/8x3+AEMp+2EQ0r1yLHiDLe3+8ioZFWsmVlkV7XdclfGmv4RcaO5jJmDBEM2Ymg90YFL+pScJiy3Lk8SBGjegtegh5QesSRk3dTDlMfhCWDjv/dXBw5VgQP0O4gh8/5rhimGggrqAgM40rxCczjStdbkjLq1zjwGwxQwAHDXY6HZpg5AFuW11dhbrmFCIjaWGtra2trq7iRQ27qpYpD2vCsVBp3WwxjJeeaaVSAd2au7fFrPY8ti4SYQdz6yKG8wy4+uVyqTRfKi3M3N93XEG7jDmuOkO3LjLhKru4goLcdVztp7zCEDaTVzk0iseg9gECWAT4hpxQQhNJSBJHCxgVjA7wsl6v48GG+Z418btvvFbMn72O79HOtbP9b1YuH88Xivo5Oxdht1arNRorl44WS5fvNMxxbrfbn146li9dWpatYQ3bOQxCAF5gOToGnlWrlTfeKL+4GGVQgKyIES/PVf63iTI+f7fUcV23XndfsG/4yU1UZm1vFLg8/d3yi4stRm/pL+NaXV1tmgPOacw/aX/VbJEQIK5b2oYrW58ajQYAgdnbtOU72B11S9tvt9sPHjzg8DF20AQ3N20Ru27pPQ3bv02jFbxGg5wkrqXE4M6mbcjaW1w5sxPzpdJ8qTQ/MVuJ4YreBnFFpx5vqZubT1EiuGpwpMRVzbZcxHF198pCqTRfKn36z5vjKhpXGlfzn0C7XPltp4M4PoDh2ipu3aLwbgxXUTRjJ7jCYuwz4mruNZ2Sr/wshqtPLx3jv0o/+KyPqxuvxyfy1rgiEwfiChvdd44r7fC5nw+UV3OvxKVQvlDMF17/YMe4IhdSuKrRVxuEq0/eKhVfeW8grm5dPFqcvBEFBjtJXH3yVqmYP/qD28TV9XPpcd3YDq6Y9jZQXuXatihHPa9qlpqT9gtvq1oiGtwrKk+qkJoE3B3ZYUR3u9VqXZ8s5s+9DxjhpXOTxfy5GxjY8tvH8sd+eIcZFLcvHykU80cvL0f+8spbpeKRS7f5ilardefy8Xzp4r1Oh54auteyvUt4EcHaarVUVby4GOURGilq33mjnJuo/FR26mIUmPNUnx++W8694S5GTG28aA2e+dBpSkoimkWgoBFfbGSbalB0bC8YjUfGbWGSQAQAhZyiNVm1wy/qzwLuruWKkN01c8aBY8YlWhbVZSM1yWNxbUGLRhP6vA+4undvohRpl9LEvc8UVzUL2hBXddt2B/Ji0rqSmQM5RcO8ZlvqHAtMV20tV3C1MnuzVJovlT6ZH4Sr/h7GViuBq3qt77tcubs5rrAyTGHRtAQnyvpnwxXmwrPh6vpk8eyc4Wr54pFC9Gen06nNncsXjl2+A1zNvVoovnotwtXcZPHsnOFq+WKpUJy8sQWuCJ6BuIJo3hmu7lw8WswXXnt/ZHmFNu/+4Hi+dGl5x7iCvTsIV9WWlRuI4+rGZF89J3A1x3+9es1pD5BXy2+XivlCMX/08l3i6vq5fOHcL3aAK3BhM3mVqz3X+PJ7Z4v5c+/XJQ743tli/rVfwFVc/G9H86VLy7E44PVXCsX82WuNRqPZvPN/HymWLt9tS9bKyuXj+aOXlwdlrcDEbm+ateK+MFE+82Esa+XDd8u5ifJPts6Gck9NlE//OpG1Un1hovzCwrCslVHiy+O/bgGEtfd73WL+H0y1lOZLpfnvzyfiy//6fflv6aU7KxBt5fvf0+9fvv8bzOpPV16S7/9+tgqX67MZeCefzEa/zJdK82/+0nEcx1QLPx//Ary7f/9l+X7iaqWfDfWb2L+gXa5+tttZdlviCtlKu4Krucli/tz7rVar2bxz6Wjxm28vE1fLF4/lj/1weRCu3n21mJ+cG46r5tB1C/guO8HVp5eO5Qvn3t32usX7ZwvF1z7YhSw7mmXO9rLsbpwtFM/ODcyye/flQvHs3AB5NTdZzE/O3XrraP7o5dvE1Y3X84XX53aAK+r4gfIq17AMbvplZKpjeR10werm98G6oXVMKdBqtRgkperDz6bFWPE7pNsH/7WYn5xrWXKI4zjXzhbzk3MPHjxwHOfTS8fyRy+vWBYH1Pu9H57IF/7r9VrNdT+5dLRY+uE9NStWLh+HQuKcpOFD34XBVtrC1Wq12ay9OFF+YSFKIW+1Wo1G7btvlP92rm/+AEZq+2NQs/9Uzn2n/IlFn9tRmkrjxYnyqX9+UDfjEYqdiCfmWlaNgwxGpjnZVjfrrGKbaRlM5xSitqBBt7a2hq42JE8RiK/ZVbfcdqaLwIxyLXgNwrqWXuJa1RAaLA3bFAbaNi1BaM9x9fs3S/Ol0vzLs7+P4mNv/r6Pq49WSqX5Uunm7KfA1W//4aW7d+r1+s9vRUsd92BV/Ov3J+7dd10XQaqXf/u7Wq3m/u4fS/Ol0vz/9at6vdW6b0pl4sqq6zjOB8tRy3dct1a7+474LsAVPJKJz+7WarXqb/8B2mi+0ahWq5GzMv/9+Uaj1WpFkbGbs7/ZBFfVahURpziuomzdneCKVSx3jKvbF48Wj1xageUHqdfH1Y3X84WzNwbgauXy0SjqMARXkMKb4QrTeQe4+uTi0WLp8t1tyatHjx7NTRbzR39wy+QVegV5VTNvSeXV2toatpJgInRsZ27NEq7ceASV8gpEGCSv5l4pFCdvNGkmmrxqNBrvTxaKkzeS8ur6ZDFfurSCtYajl5eJq7lzDIU9G64w9zeTVzmoWfxE+Tk8DMrim4atpEHjgUBNC+6jNx2r9QbaPXz4ECRzJZhI379u6Yk3XksHNIv5s9cB6OW3j0HTVi3VodVqrb77ar5w9NJKo9W6+1apeOTSCrQrELD89rF86eKyZWpDCTdtJZPKGf/tWFG5hw8fViqVFyfKp39dhSm0trZWqVT+bqJc/I6urDjvmB9QsySZzu/rfzNRPvNhFHwAv9vtdqfTeGGi/MJC30+ko1Cr1bhfl+R1XRfmOUaqvm3DlijZSM1WTZrNJneK0eir286smsXoRYn2i9NxII5l+JChaN+xTFPiqWLF8kBYUInh46blywMke4orCytdvcvFj+VfRriqzr48XyrNl/7xdy6NKcdx3NUr0EP/8NuIVhGuyldfni+V5v/+//09Sr3+M7yiN/+t7bp3Igdl+QOA2RTGxJV/d5rN+/bfX0WQ+PcfTcyXSvMvzzwArj78XvTGqr2l9NLKp5AdvzJFdd9CfzFcdTp1CWoJrqKF2Z3gigbBTnE1dy5fOPbWMnD1/iuF4qvXBVfXJvOFybk0rq5N5gvH31reAldc7hqIq8dPnu4MVx9MFoqlY7qyO/neVvKqdfcH3ywUX70ex5UF8UirmLxaXa1YCWH1BprNJpItq7YjMiGvGJFLyav3XisUX/lZBVE1lVedzgcvF4pn5/pRilqtdvvSsfzRy5/WatVq9falY/lj/3SbuJqLr7uce3+7uGK1t4HyKtfYQeizueOQ+vvnivnJubqE1Ocmi/mz10FlLNHfToQ+587lC8cv32277idvl4rffHu5LqHP5FKNhD4xozYPqTfOTJRfXNTQZ/3/nCj/zfWoZEW1Wv3p/yjnJpyfxkPqP/0f5dx3Kx/HQ+qO47TbjTMT5Rc+GhZS57vgUwMQDNw7trWY07UpKfbjs1TDyNjoSzU7xdWDGeiJic/utlqtlTsvRX6M065Wq44pgKvl+FJN5JS8NPMgHlKPx9B0LafZvG+q64MopG4q6h//pVavf/ajjyLtEuEqekW6qfvWq9Kbv49C6pGC/OhHvxl5qQaAcYYuAY6CK8Rkdoqre/90pFA8cnnFcHX9bKE4eUNwdeP1fOHcjQSuli/iqS1xVR+6BMi9+s+Kq+uvFiLpAVzNTRbzhXNzW8qro5dvb2dpubb5EiC0y/aXAH/+SqF47hcDl2o+OFsovno9klftdnvl8vF84fU5w9XtS8fyR3+wPBhXv3i1EEnj0XGF+ORm8irXfK55nAjaar4d4oPoz53Lx/NH/tu9eL7d8sVj+cK567Ua4rz5czc0327uXDF/9PLKoHw7qtnN8u1emCi/uBhVQ3JdF+rh75aiAKjrupU7lb+ZqEzfc6C3G41G83fu306UT/86sjsoHarVKhZyXlxs0fZsWLEjIBX+clOyWWrjdwRFc4Q8ThC2uY/5wffTqxfRIsr9ZrNpKysT77jxPM5Ii0zMVmN5nHc/m6DWUVt+bW1tdXX5x4tR7AscNO+k9L375VbLdM8n88CVJRq89KN/7+Oq4q6jjAAACjFJREFUYVE4/GvWaWOMzBn71PYk9nHVbDIWkcJVJKl3givItR3h6sbr+ULxyOUVwdUcwjJ9XL17Nl84977iau5cvlD85lsfj4IrDG0zXLGK5bPi6jqSDvq4uvODUuH4D+9vLq9uvYUUhs4u5QczuNfYXn7w3GSh+MrPDFd9edV23evnCv2csUqlsnzx2IDgUKF4dm4QruZeyxdev7YdXHHdZaC8ymHknedU5/n6ZJR/XDeHce5cMf/az/EirLsgf8513QcPHtRqc2cLxdLluxj5u68W8+feJ2sRS4XrA2whjgyIcK8+Olm1wjvwnZvN2gsT5dO/rtJsL5fL33mj/LdzUVPNZtO9V4V26XQ68MFnfljOfbe63Gika3dDu8B3aVjgsmVrCTQQqLrqWasfXpctx+gezd7W3tYPt5X2m7P3IljdiyJUN2dXqtV6+SoUwPf/tY+rRqPRqs7S7ajZKqXrug/+9f/hyg1GRBGvsS80og7Qw4f/wpyxCFcPZl6yVxuurLyj/et798sY+y9lCadh9TaAq4qdqzEIVzX+fGZcMWfsGXF1bTJfKE7eSOBq5eLR4pFLt4mrez88gfzXCFdz55DsNCKu2L2BuMJ03gGuPr50tHjk0u0+rm5fPlI4dvnOpvJqbrKIjCGVVw2LQdUt/aEek1eRB5PCVbLcQFpe0TVJyatr52xxBVqB8gqKB8FJtJDA1a23juZLl1Y2wdXtS8fyhXNz28EVdyMMlFc5ONq0DsgPMhjNPXjwALqLLpvKqZaUIqhZygHup/BiFkRN0jngqdTk2JyfvlLMvx7FuG9fOpYvXbxtpkFjJcpIvkNIrVwuFYrnft6GgeNcm8wXjl38NGIPGEnwsZQvrK2aLZRhdtXr7osT5dP/X7zq30I1N1H5zm8i6+B//vdy7g13hVX/7lX+dqLyxu82q/rnItTW2rzqH2dyxw66oHBvWpjYsaKkNQteqdomm3kbIYUJ0LAdDDVbXyGaGxZocl231WppngkddkbbXVs5RDuYJ6wEU5MgdUOS0PYEV+6PoQxe/s1vias7dxEce+lqud5oNH5lGxXvAFf/8o9/v7Lc6XQ+sNWaFfhwv39z4t79/v3zb/4yQsv8m/OlN/+tLdrll7Va7eHDD9+cj6Ugc2X+nuFKm3r48GG9/qs350vf+02lWl2JHJ2FmXuNRr1et05eud9sNne1muSWuOJe/WfA1e1Lx/KF45dWBuFq7rV84dilFeBq7tVCcfJGhCs89dbyNnBVlxImaVwBdTvC1XuRuMCzv3g9inp1Op3mjdfz5gRE8ur25SOF4xdv19krEHl1dRWBO9e25tQpr8zIVhUIj61pK8Fof6C8ci2ckJJX118rFM/ODaxS+v5Z+5c7qErpyuXj+aM/+NTIMneu+Op14mru1UKxdPnOtnCla65peZUbHhms7ebmgAFJ3DdeK+bP3WhJxHlusph/7efog250Yip3LRFx/uRSqX/DUYDeHbQ5QNVsS5K44bXovsjiu/39XM1Fp7+q/8NKrVZDukWz2fjOG+Xcf48YT5SXy2WE1LTBv7nWl/hNy+wELJq7tOmktscrZM3NNzOpdhkx4rwTXP36dj8tuI8rUzml5V+i5fuyGwaLKAg4fBb//qW7KwCJxcf4eWnWadfrnyXTjudLE/fuC67mv89/Lf8KuEqlHU9cWYVl+mm6tdLCzKcVxVWzZmv4KVy1FcANqYa7XVyxeM/2cXXv0tF0pOX4xdvRi5bf7s/ZI5dWDFfYWZL4HHtr+Vk2ydXM/doFXF2b7Pfn9Q/68urn0C6UV5+8XSrmz15r7+oKme7AS8ururibJq9+cTZOwyMXP6nX65VKpdX6efJfl25XUrhauXw8X7r4qeHqdlzAHrl0e7u4YvLhQHmVewaHgybArihwx9YPt6nA3e2Wr2egdoeGYW33yow/R4djuGHI/o9iGOr5dLUdOLJjiStzOJZ/tRmudsvh2E9csV74OOOqLlcaVxhCZnG1dfn6TOAKq/qbyascu86Me0fC8Vgig3LGDU3b1YUbKnbyAZlBuwBcrNvqHAkHt6ZhGXscAM0TLoRCByrXMbCW7YJEr1j/A5n42FpVt8LUGAJnFK0z13JpaCNUrZ5rywowVK1SBV5EBrRs3xOGRuOOkKrZ3q6Wpes4FkdGqqWaA+3xK4batKBt3SrKEJcYETFUt1X9lpxx1LZjlLKPq7vRGs/tX2+GK9eKBGcIV4+fPB1/XDmW3DgQVzxvO5u4qnEImcYVnODN5FWumZFCvJ0db2hnsUUSnYbD8yqYmt3TDwliiKqWXWokfi1w9dsolvXxLzbDFa5s4YqpPuOMq8bQwuH0mLOJq07L6upmGldQkJvJq9w4exu7q73pu+xEezfsoDpiy4lXUKhJyFInTN3qVTRsM+PYWoXb9TaAsLGyCvcTV7tiFe4zrli+fpxxVR/qbUBBZhpX3O+SXVyx2PZAeZXj3XUrdVm3vaagBQhBlcj34d24Bxttmlb0FGxomvdEzLlWr6ZhKXHUt3WJeyKTj1RzZSsGB1m3AHHFTpSjDYIHmX9NwwebeznSSqXCpHjwDIh0LU0e9NU+16zaj2NZ9nXbyovh435YN6APbZy2levBwB1L6pd9th0W3G7ZKhxhUd3x/m01Seqy2FuzOisd2QutU4VTuiN739qWJFqv1zFJ6pKjqSj82uOqXq9nDlf048cZV+zeQFxBQWYaV8ytyC6uGBUfKK9yzbHc/s0RdnYvaYpwdPerAnRtq6QpUsm1ZVXHskpqdhYs6dyQcmENW77jGJu2XwHGC+1KCo6qHR0IlrWlsjdnIAfoui5FEm5wNt/+TfulOfZlBfYCV7V9ryy+c1yxEsw446o1tFwFK/BnF1dMtswurlgaeKC8yjUsI6Jum+8qlQorszZsr2wrXsyn0+mwNjgeUS5y/I7ViWrYjtCmRQAZriV96+ZZ1+3S9SJkZFarVVgZwCLUL40O3E9YgyUtiyCzzlhTyszVzMF0bHNs1arC0YvEBeLSjIILjywXoAeN0EVVbtXlnKVmfHeSm/1QDNddHAtYAw8HBFecuhnCFQyCMceVa2tCA3GFIWQaVyxmk11cQcdvJq9y7vMojfzo0aO6uXu0PurPWmoU/Xe3KjUK7UKtXjM3OcEkJWttaGnk6g5K2DqS88fpl63SyEQhtqnSbKHBdUBw1R5ccnuscUXRPM64coeW3GZ1u+ziCpGxTONKK/Cn5VUOmpxc5AJdzQ6ZAE0JO6URqc9iCS0rZ4t3O+YGUrdTS7OjDTmLzbGYIBgPehH6rZ0dCUxCtMbj6NaqpcO3JNJas4ina6uXriXp08asifUE2JH9AEqj0aAZ6Ng+A/Szacepknf1aDdWC71CRLVqR0DijbReaVIR99QudfOIMZ0ODq4aY3Yk8Ci4QkBjzHFFsTgQVyxKm11ccX93dnHFU3YGyqvc4ydPDz+Hn8PP4efwc/jZ3c//Au+Lzt9AQQEpAAAAAElFTkSuQmCC" alt="" />
字典树法:
#include "cstdio"
#include "cstring"
#include "iostream"
#include "algorithm"
#include "cmath"
using namespace std;
#define memset(x,y) memset(x,y,sizeof(x))
const int MX = 1e6 + 5;
struct Trie{
int v;
Trie *next[11];
}root;
void Build(char *s){
int len = strlen(s);
Trie *p=&root,*q;
for(int i=0;i<len;i++){
int num=s[i]-'0';
if(p->next[num]==NULL){
q=(Trie *)malloc(sizeof (root));
q->v=1;
for(int j=0;j<11;j++){
q->next[j]=NULL;
}
p->next[num]=q;
p=p->next[num];
}else {
p=p->next[num];
p->v++;
}
}
}
int Query(char *s){
int len = strlen(s);
Trie *p=&root;
for(int i=0;i<len;i++){
int num=s[i]-'0';
if(p->next[num]==NULL){
return 0;
}
else{
p=p->next[num];
}
}
int v=p->v;
return v;
}
char s[10005][20];
int n,T;
int main(){
cin>>T;
while(T--){
memset(s,0);
for(int i=0; i<11; i++)root.next[i]=NULL;
cin>>n;
int ans=0;
for(int i=0;i<n;i++){
cin>>s[i];
Build(s[i]);
}
for(int i=0;i<n;i++){
ans+=Query(s[i])-1;
}
if(ans>0)puts("NO");
else puts("YES");
}
return 0;
}
/**********************************************************************
Problem: 1886
User: HDmaxfun
Language: C++
Result: AC
Time:304 ms
Memory:114092 kb
**********************************************************************/
树状数组:
#include "cstdio"
#include "cstring"
#include "string"
#include "iostream"
#include "algorithm"
using namespace std;
#define memset(x,y) memset(x,y,sizeof(x))
struct Trie {
int v;
int next[11];
void init() {
memset(next,-1);
v=1;
}
} dir[100005];
int tot;
void Build(char s[]) {
int len = strlen(s);
int now=0;
for(int i=0; i<len; i++) {
int num=s[i]-'0';
if(dir[now].next[num]==-1) {
tot++;
dir[tot].init();
dir[now].next[num]=tot;
now=dir[now].next[num];
} else {
now=dir[now].next[num];
dir[now].v++;
}
}
}
int Query(char s[]) {
int len = strlen(s);
int now=0;
for(int i=0; i<len; i++) {
int num=s[i]-'0';
//cout <<num;
if(dir[now].next[num]==-1) return 0;
else now=dir[now].next[num];
}
return dir[now].v;
}
char s[10005][20];
int n,T;
int main() {
cin>>T;
while(T--) {
memset(s,0);
memset(dir,0);
tot=0;
dir[0].init();
cin>>n;
int ans=0;
for(int i=0; i<n; i++) {
cin>>s[i];
Build(s[i]);
}
for(int i=0; i<n; i++) {
ans+=Query(s[i])-1;
// puts("");
//cout <<s[i]<<" "<<ans<<endl;
}
if(ans>0)puts("NO");
else puts("YES");
}
return 0;
}
set:
#include "cstdio"
#include "string"
#include "cstring"
#include "iostream"
#include "algorithm"
#include "cmath"
#include "set"
using namespace std;
#define memset(x,y) memset(x,y,sizeof(x))
const int MX = 1e4 + 5;
string a[MX];
set <string> st;
int main() {
int T,n;
char s[15];
cin>>T;
while(T--) {
scanf("%d",&n);
st.clear();
int ans=true;
for(int i=0; i<n; i++)scanf("%s",s),a[i]=string(s);
sort(a,a+n);
for(int i=n-1; i>=0; i--) {
if(st.find(a[i])!=st.end()){
ans=false;
break;
}
string tem="";
int len=a[i].length();
for(int j=0;j<len;j++){
tem+=a[i][j]; //string 居然可以直接添加字符,涨知识了。网上查了一下,string是一种类对象,可以直接用 +"xxx"将xxx直接接在前一个对象尾部。
st.insert(tem);
}
}
puts(ans?"YES":"NO");
}
return 0;
}
//我一开始一直在一个个字符的添加成串,再转到set里面,这种方法卡时间又卡这么厉害,之前没过也是必然了。。
/**********************************************************************
Problem: 1886
User: HDmaxfun
Language: C++
Result: AC
Time:972 ms
Memory:7460 kb
**********************************************************************/
- HDU 1800 Flying to the Mars 字典树,STL中的map ,哈希树
http://acm.hdu.edu.cn/showproblem.php?pid=1800 字典树 #include<iostream> #include<string.h> ...
- STL MAP及字典树在关键字统计中的性能分析
转载请注明出处:http://blog.csdn.net/mxway/article/details/21321541 在搜索引擎在通常会对关键字出现的次数进行统计,这篇文章分析下使用C++ STL中 ...
- Organize Your Train part II 字典树(此题专卡STL)
Organize Your Train part II Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8787 Acce ...
- stl应用(map)或字典树(有点东西)
M - Violet Snow Gym - 101350M Every year, an elephant qualifies to the Arab Collegiate Programming C ...
- hdu 1251 字典树的应用
这道题看了大神的模板,直接用字典树提交的会爆内存,用stl 里的map有简单有快 #include <iostream> #include <map> #include < ...
- hdu2072 字典树
这题印象深刻,我刚接触acm时,以为这题是水题(因为是中文,又短),一直没做出.现再想想也是.可能也是我以前字符串掌握不好: 这题其实也可以用stl里的map写.这里我用字典树写的.其实这题算简单题了 ...
- C++ TrieTree(字典树)容器的实现
最近研究了一下C++线程池,在网上看了一下别人的代码,写的很不错,参见:http://www.cnblogs.com/lidabo/p/3328646.html 其中,他用了STL的set容器管理线程 ...
- 『字典树 trie』
字典树 (trie) 字典树,又名\(trie\)树,是一种用于实现字符串快速检索的树形数据结构.核心思想为利用若干字符串的公共前缀来节约储存空间以及实现快速检索. \(trie\)树可以在\(O(( ...
- Trie(字典树)解析及其在编程竞赛中的典型应用举例
摘要: 本文主要讲解了Trie的基本思想和原理,实现了几种常见的Trie构造方法,着重讲解Trie在编程竞赛中的一些典型应用. 什么是Trie? 如何构建一个Trie? Trie在编程竞赛中的典型应用 ...
随机推荐
- 包管理工具之Pipenv
pipenv 都包含什么? pipenv 是 Pipfile 主要倡导者.requests 作者 Kenneth Reitz 写的一个命令行工具,主要包含了Pipfile.pip.click.requ ...
- Redis学习笔记(三)使用Lua脚本实现分布式锁
Redis在2.6推出了脚本功能,允许开发者使用Lua语言编写脚本传到Redis中执行. 使用Lua脚本的好处如下: 1.减少网络开销:本来5次网络请求的操作,可以用一个请求完成,原先5次请求的逻辑放 ...
- RMQ(ST表)
#include<iostream> #include<cstdio> #include<cmath> using namespace std; int N, M, ...
- Spring Security 之基本概念
Spring Security 是一个安全框架, 可以简单地认为 Spring Security 是放在用户和 Spring 应用之间的一个安全屏障, 每一个 web 请求都先要经过 Spring S ...
- 老是上不了 google scholar...
这段时间老是上不了 google scholar... 下载了最新的 host 也不行. 难道真是电脑有问题了? 网络有时也老是掉... 也好. 多休息休息. 人生难得几回清闲. 马上就要开学咯. 课 ...
- 使用Notepad++开发Java程序
安装NppExec插件(已安装可跳过) 插件下载地址 我选择了最新的RC2 根据软件位数下载对应的版本,我直接下载了32位对应的dll 解压后里面有两个文件夹和一个dll文件 拷贝到Notepad++ ...
- 边缘检测之Canny
1. 写在前面 最近在做边缘检测方面的一些工作,在网络上也找了很多有用的资料,感谢那些积极分享知识的先辈们,自己在理解Canny边缘检测算法的过程中也走了一些弯路,在编程实现的过程中,也遇到了一个让我 ...
- python开发遇到的坑(1)xpath解析ValueError: Unicode strings with encoding declaration are not supported
Traceback (most recent call last): File "/Users/*******.py", line 37, in <module> Bt ...
- 第一天 Requests库入门
Requests库的get()方法 requests.get(url, params=None, **kwargs) ∙ url : 拟获取页面的url链接 ∙ params : url中的额外参数, ...
- Gradle part1 HelloWorld
(https://spring.io/guides/gs/gradle/#scratch) ----gradle helloworld----- 1.下载后安装 Unzip the file to y ...