题目链接:

[集训队作业2018]小Z的礼物

题目要求的就是最后一个喜欢的物品的期望得到时间。

根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq S}^{ }(-1)^{|T|-1}E(min(T))$

那么只需要知道每个子集中最早得到的物品的期望时间即可得出答案。

对于每个子集,最早得到的物品的期望时间就是一次选择能得到这个子集中元素的概率的倒数。

用一次选择能得到这个子集中的元素的方案数除上总方案数(每次共有$2*n*m-n-m$种选择方案)就能得到对应的概率。

最暴力的方法就是枚举$2^{cnt}$个子集然后对每个求概率。

但可以发现方案数最多只有$2*n*m-n-m$个,我们可以轮廓线$DP$求出每个集合的方案数。

设$f[s][k]$表示轮廓线为$s$,方案数为$k$的集合个数。

因为容斥系数只有$-1$和$1$两种,所以在$DP$时直接将容斥系数算进去即可。

最后对于每个子集求出期望然后加和即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define mod 998244353
using namespace std;
int inv[1200];
int f[2][70][1200];
int n,m;
char mp[7][110];
int S,sum;
int ans;
int now,pre;
int main()
{
scanf("%d%d",&n,&m);
S=(1<<n)-1;
sum=2*n*m-n-m;
for(int i=1;i<=n;i++)
{
scanf("%s",mp[i]+1);
}
inv[0]=inv[1]=1;
for(int i=2;i<1200;i++)
{
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
f[0][0][0]=mod-1;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
pre=now,now^=1;
memset(f[now],0,sizeof(f[now]));
for(int s=0;s<=S;s++)
{
for(int k=0;k<=sum;k++)
{
if(f[pre][s][k])
{
int t=s&(S^(1<<(j-1)));
f[now][t][k]+=f[pre][s][k],f[now][t][k]%=mod;
if(mp[j][i]=='*')
{
t|=1<<(j-1);
int num=0;
if(j>1&&!(s&(1<<(j-2))))num++;
if(i>1&&!(s&(1<<(j-1))))num++;
if(i<m)num++;
if(j<n)num++;
f[now][t][k+num]+=mod-f[pre][s][k],f[now][t][k+num]%=mod;
}
}
}
}
}
}
for(int s=0;s<=S;s++)
{
for(int i=1;i<=sum;i++)
{
ans+=1ll*f[now][s][i]*inv[i]%mod,ans%=mod;
}
}
ans=1ll*ans*sum%mod;
printf("%d",ans);
}

[UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥的更多相关文章

  1. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  2. bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp

    4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 98  Solved: 29[Submit][Status] ...

  3. UOJ#449. 【集训队作业2018】喂鸽子(期望dp)

    题意 有 \(n\) 只鸽子,每只鸽子需要 \(k\) 粒玉米才能喂饱.问每次随意喂给 \(n\) 个鸽子中的一个,期望多久所有鸽子都被喂饱. 对于 \(998244353\) 取模. 数据范围 \( ...

  4. UOJ422. 【集训队作业2018】小Z的礼物 [min-max容斥,插头DP]

    UOJ 思路 由于没有代码和AC记录的支撑,以下思路可能有错. 看到全部取完,大概可以想到min-max容斥. 由于期望的表达式里面合法方案的个数是在分母里面的,所以可以想到把它记录在状态里. 然而由 ...

  5. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  6. 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物

    T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...

  7. UOJ#422. 【集训队作业2018】小Z的礼物

    #422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...

  8. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  9. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

随机推荐

  1. 使用Git进行版本管理

    参考:http://www.runoob.com/git/git-tutorial.html 一.Git简介 1.Git 和 SVN 比较 (1)GIT是分布式的,SVN不是; (2)GIT把内容按元 ...

  2. 为什么我觉得Python烂的要死?

    为什么我觉得Python烂的要死? https://www.toutiao.com/a6636558446030225923/ 作为机器学习程序员的首选编程语言,Python成为世界范围内最受大学生欢 ...

  3. ArcGIS for JavaScript学习(二)Server发布服务

    一 ArcGIS for Server 安装.配置 (1)双击setup (2)点击下一步完成安装 (3)配置 a 登录Manager 开始—>程序—>ArcGIS—>Manager ...

  4. 电脑一键U盘启动快捷键

    下面是我特意列出的品牌电脑.笔记本电脑.组装电脑一键U盘启动快捷键对应列表,仅供大家查阅参考! [品牌-笔记本电脑] 笔记本品牌  启动按键 联想笔记本  F12 宏基笔记本  F12 华硕笔记本   ...

  5. Server/Service/Engine/Host/Context} Setting property 'source' to 'org.eclipse.jst.jee

    双击 勾上蓝色保存

  6. Windows 下安装drozer(Windows 10),连接手机(红米note4X)

    Windows 下安装drozer(Windows 10),连接手机(红米note4X) 首先下载drozer(http://mwr.to/drozer). 红米手机开发者模式 遇到第一个问题,红米手 ...

  7. Saltstack_使用指南04_数据系统-Grains

    1. 主机规划 Grains文档 https://docs.saltstack.com/en/latest/topics/grains/index.html 注意事项 修改了master或者minio ...

  8. 【笔记】基于Python的数字图像处理

    [博客导航] [Python相关] 前言 基于Python的数字图像处理,离不开相关处理的第三方库函数.搜索网络资源,列出如下资源链接. Python图像处理库到底用哪家 python计算机视觉编程— ...

  9. python打印电脑串口的信息

    # -*- coding:utf-8 -*- from serial.tools.list_ports import comports port_list = list(comports()) if ...

  10. 【Python 11】汇率兑换4.0(函数)

    1.案例描述 设计一个汇率换算程序,其功能是将美元换算成人民币,或者相反. 2.0增加功能:根据输入判断是人民币还是美元,进行相应的转换计算 3.0增加功能:程序可以一直运行,知道用户选择退出 4.0 ...