Tikhonov regularization 吉洪诺夫 正则化
这个知识点很重要,但是,我不懂。
第一个问题:为什么要做正则化?
In mathematics, statistics, and computer science, particularly in the fields of machine learning and inverse problems, regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting.
And, what is ill-posed problem?... ...
And, what is overfitting? In statistics, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably", as the next figure shows.

Figure 1. The green curve represents an overfitted model and the black line represents a regularized model. While the green line best follows the training data, it is too dependent on that data and it is likely to have a higher error rate on new unseen data, compared to the black line.
第二个问题:常用的正则化方法有哪些?
第三个问题:The advantages fo Tikhonov regularizatioin
The fourth question: Tikhonov regularization
Tikhonov regularization, named for Andrey Tikhonov, is the most commonly used method of regularization of ill-posed problems. In statistics, the method is known as ridge regression, in machine learning it is known as weight decay, and with multiple independent discoveries, it is also variously known as the Tikhonov–Miller method, the Phillips–Twomey method, the constrained linear inversion method, and the method of linear regularization. It is related to the Levenberg–Marquardt algorithm for non-linear least-squares problems.
Suppose that for a known matrix A and vector b, we wish to find a vector x such that:
The standard approach is ordinary least squares linear regression. However, if no x satisfies the equation or more than one x does—that is, the solution is not unique—the problem is said to be ill posed. In such cases, ordinary least squares estimation leads to an overdetermined (over-fitted), or more often an underdetermined (under-fitted) system of equations. Most real-world phenomena have the effect of low-pass filters in the forward direction where A maps x to b. Therefore, in solving the inverse-problem, the inverse mapping operates as a high-pass filter that has the undesirable tendency of amplifying noise (eigenvalues / singular values are largest in the reverse mapping where they were smallest in the forward mapping). In addition, ordinary least squares implicitly nullifies every element of the reconstructed version of x that is in the null-space of A, rather than allowing for a model to be used as a prior for . Ordinary least squares seeks to minimize the sum of squared residuals, which can be compactly written as:
where
is the Euclidean norm.

In order to give preference to a particular solution with desirable properties, a regularization term can be included in this minimization:
for some suitably chosen Tikhonov matrix,
. In many cases, this matrix is chosen as a multiple of the identity matrix (
), giving preference to solutions with smaller norms; this is known as L2 regularization.[1] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator) may be used to enforce smoothness if the underlying vector is believed to be mostly continuous. This regularization improves the conditioning of the problem, thus enabling a direct numerical solution. An explicit solution, denoted by
, is given by:
, process can be seen at (https://blog.csdn.net/nomadlx53/article/details/50849941).
The effect of regularization may be varied via the scale of matrix . For
this reduces to the unregularized least squares solution provided that (ATA)−1 exists.
L2 regularization is used in many contexts aside from linear regression, such as classification with logistic regression or support vector machines,[2] and matrix factorization.[3]
对于y=Xw,若X无解或有多个解,称这个问题是病态的。病态问题下,用最小二乘法求解会导致过拟合或欠拟合,用正则化来解决。
设X为m乘n矩阵:
- 过拟合模型:m<<nm<<n,欠定方程,存在多解的可能性大;
- 欠拟合模型:m>>nm>>n,超定方程,可能无解,或者有解但准确率很低

REF:
https://blog.csdn.net/darknightt/article/details/70179848
Tikhonov regularization 吉洪诺夫 正则化的更多相关文章
- matlab-罗曼诺夫斯基准则剔除粗大值
罗曼诺夫斯基准则原理 罗曼诺夫斯基准则又称 t检验准则,其特点是首先删除一个可疑的的测得值,然后按 t分布检验被剔除的测量值是否含有粗大误差 罗曼诺夫斯基准则 1)选取合适的显著度a,选择合适的数 ...
- Tikhonov regularization和岭回归
就实现过程来讲,两者是一样的,都是最小二乘法的改进,对于病态矩阵的正则化,只不过分析的角度不一样,前者是解决机器学习中过拟合问题,机器学习一般是监督学习,是从学习角度来说的,后者是数学家搞的,是为了解 ...
- 切诺夫界证明(Chernoff bound)
- 软阈值迭代算法(ISTA)和快速软阈值迭代算法(FISTA)
缺月挂疏桐,漏断人初静. 谁见幽人独往来,缥缈孤鸿影. 惊起却回头,有恨无人省. 拣尽寒枝不肯栖,寂寞沙洲冷.---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" ISTA ...
- Machine learning | 机器学习中的范数正则化
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...
- Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
- 柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)
柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同. 在进行cumulative probab ...
- [No0000119]什么是柳比歇夫的时间事件记录法
上图是我过去一年来做的时间事件记录中的某几天的记录文字.从接触到这种方法以来,也就是2009年的7月31日到今天,我已经作了一年多时间的记录.那么什么是时间事件记录?很简单,就像那两幅图片上所展示的, ...
- 正则化--L2正则化
请查看以下泛化曲线,该曲线显示的是训练集和验证集相对于训练迭代次数的损失. 图 1 显示的是某个模型的训练损失逐渐减少,但验证损失最终增加.换言之,该泛化曲线显示该模型与训练集中的数据过拟合.根据奥卡 ...
随机推荐
- 清北学堂北京大学冯哲神仙讲课day2
今天讲基础数据结构 首先讲(二叉搜索树) 保证左儿子小于右儿子,那么对于根节点来说.大于根节点的放到右子树递归,小于根节点的放在左子树 相等的呢?某大佬(老师)这么说: 删除的前提是找这个点在哪: 如 ...
- day15
三元表达式 符合python语法的表达方式(形式,公式)称之为表达式 三元:三个元素 总体就是,由三个元素组成表达式其目的是为了简化书写,既然是简化必然有局限性三元表达式只能帮你简化仅有两个分支的if ...
- 持久层Mybatis3底层源码分析,原理解析
Mybatis-持久层的框架,功能是非常强大的,对于移动互联网的高并发 和 高性能是非常有利的,相对于Hibernate全自动的ORM框架,Mybatis简单,易于学习,sql编写在xml文件中,和代 ...
- ArcGIS Pro开发Web3D应用(1)——环境搭建与初始实例
1.搭建环境 1.1 ArcGIS Web3D软件环境 ArcGIS Pro 2.0(必须) ArcGIS for Enterprise 10.5.1 (从10.5开始称呼为Enterprise)包括 ...
- ExtJs写本地ArrayStore,ComboBox调用
1.自定义本地ArrayStore var sCurStore = new Ext.data.ArrayStore({ //设备状态store fields: ["ckey", & ...
- HTTP响应 状态码描述
- 20175317 《Java程序设计》第八周学习总结
20175317 <Java程序设计>第八周学习总结 教材学习内容总结 第八周我学习了教材第十五章的内容,认识了什么是泛型与集合框架,具体内容如下: 泛型 1. 如何声明泛型类 2. 如何 ...
- scrapyd的安装和scrapyd-client
1.创建虚拟环境 ,虚拟环境名为sd mkvirtualenv sd #方便管理 2. 安装 scrapyd pip3 install scrapyd 3. 配置 mkdir /etc/scrapy ...
- 弹筐里同一个按钮判断是从哪里点击过来的form
点击弹框按钮 <form action="javascript:;" method="post"> <button type= ...
- js下拉列表选中
var monthobj = document.getElementById("pid");// for(var i=0; i<monthobj.options.length ...