裸题,直接上。复杂度O(n*sqrt(n)*log(n))。

//Num[i]表示树中的点i在函数式权值分块中对应的点
//Map[i]表示函数式权值分块中的点i在树中对应的点
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define N 80001
#define INF 2147483647
#define NN 87001
#define BN 296
int x,y;
int fa[N],dep[N],siz[N],son[N],Num[N],tot,top[N],n,m,Ks[N],xs[N],ys[N],w[N];
int en,first[N],next[N<<1],v[N<<1];
int en2,en3,ma[NN],a[NN];
int l[BN],sum=1,r[BN],num[N];
int r2[NN],num2[NN],sum2=1;
struct Point{int p,v;}t[NN];
bool operator < (const Point &a,const Point &b){return a.v<b.v;}
struct Val_Block
{
int b[NN],sumv[BN];
void insert(const int &x){++b[x]; ++sumv[num2[x]];}
void erase(const int &x){--b[x]; --sumv[num2[x]];}
}T[285],S;
void AddEdge(const int &U,const int &V)
{
v[++en]=V;
next[en]=first[U];
first[U]=en;
}
void dfs(int U,int Fa,int d)
{
fa[U]=Fa;
dep[U]=d;
siz[U]=1;
for(int i=first[U];i;i=next[i])
if(v[i]!=fa[U])
{
dfs(v[i],U,d+1);
siz[U]+=siz[v[i]];
if(siz[v[i]]>siz[son[U]])
son[U]=v[i];
}
}
void dfs2(int U)
{
if(son[U])
{
top[son[U]]=top[U];
Num[son[U]]=++tot;
dfs2(son[U]);
}
for(int i=first[U];i;i=next[i])
if(v[i]!=fa[U]&&v[i]!=son[U])
{
top[v[i]]=v[i];
Num[v[i]]=++tot;
dfs2(v[i]);
}
}
void makeblock()
{
int sz=sqrt(n);
if(!sz) sz=1;
for(;sum*sz<n;++sum)
{
l[sum]=r[sum-1]+1;
r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];++i)
num[i]=sum;
}
l[sum]=r[sum-1]+1;
r[sum]=n;
for(int i=l[sum];i<=r[sum];++i)
num[i]=sum;
}
void val_mb()
{
int sz=sqrt(en3);
if(!sz) sz=1;
for(;sum2*sz<en3;++sum2)
{
r2[sum2]=sum2*sz;
for(int i=r2[sum2-1]+1;i<=r2[sum2];++i)
num2[i]=sum2;
}
r2[sum2]=en3;
for(int i=r2[sum2-1]+1;i<=r2[sum2];++i)
num2[i]=sum2;
}
void Init_Ts()
{
for(int i=1;i<=sum;++i)
{
T[i]=T[i-1];
for(int j=l[i];j<=r[i];++j)
T[i].insert(a[j]);
}
}
int Query(const int &x,const int &y,const int &K)
{
//构建零散部分的权值分块
int U=x,V=y,cnt=0,res=INF;
int f1=top[U],f2=top[V];
while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
swap(U,V);
swap(f1,f2);
}
if(num[Num[f1]]+1>=num[Num[U]])
for(int i=Num[f1];i<=Num[U];++i)
S.insert(a[i]);
else
{
for(int i=Num[f1];i<=r[num[Num[f1]]];++i)
S.insert(a[i]);
for(int i=l[num[Num[U]]];i<=Num[U];++i)
S.insert(a[i]);
}
U=fa[f1];
f1=top[U];
}
if(dep[U]>dep[V])
swap(U,V);
if(num[Num[U]]+1>=num[Num[V]])
for(int i=Num[U];i<=Num[V];++i)
S.insert(a[i]);
else
{
for(int i=Num[U];i<=r[num[Num[U]]];++i)
S.insert(a[i]);
for(int i=l[num[Num[V]]];i<=Num[V];++i)
S.insert(a[i]);
}
//计算答案
for(int i=sum2;i>=1;--i)
{
int tcnt=0;
U=x; V=y;
f1=top[U]; f2=top[V];
while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
swap(U,V);
swap(f1,f2);
}
if(num[Num[f1]]+1<num[Num[U]])
tcnt+=T[num[Num[U]]-1].sumv[i]-T[num[Num[f1]]].sumv[i];
U=fa[f1];
f1=top[U];
}
if(dep[U]>dep[V])
swap(U,V);
if(num[Num[U]]+1<num[Num[V]])
tcnt+=T[num[Num[V]]-1].sumv[i]-T[num[Num[U]]].sumv[i];
tcnt+=S.sumv[i];
cnt+=tcnt;
if(cnt>=K)
{
cnt-=tcnt;
for(int j=r2[i];;--j)
{
U=x; V=y;
f1=top[U]; f2=top[V];
while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
swap(U,V);
swap(f1,f2);
}
if(num[Num[f1]]+1<num[Num[U]])
cnt+=T[num[Num[U]]-1].b[j]-T[num[Num[f1]]].b[j];
U=fa[f1];
f1=top[U];
}
if(dep[U]>dep[V])
swap(U,V);
if(num[Num[U]]+1<num[Num[V]])
cnt+=T[num[Num[V]]-1].b[j]-T[num[Num[U]]].b[j];
cnt+=S.b[j];
if(cnt>=K)
{
res=j;
goto OUT;
}
}
}
}
OUT:
//清空零散部分的权值分块
U=x,V=y;
f1=top[U],f2=top[V];
while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
swap(U,V);
swap(f1,f2);
}
if(num[Num[f1]]+1>=num[Num[U]])
for(int i=Num[f1];i<=Num[U];++i)
S.erase(a[i]);
else
{
for(int i=Num[f1];i<=r[num[Num[f1]]];++i)
S.erase(a[i]);
for(int i=l[num[Num[U]]];i<=Num[U];++i)
S.erase(a[i]);
}
U=fa[f1];
f1=top[U];
}
if(dep[U]>dep[V])
swap(U,V);
if(num[Num[U]]+1>=num[Num[V]])
for(int i=Num[U];i<=Num[V];++i)
S.erase(a[i]);
else
{
for(int i=Num[U];i<=r[num[Num[U]]];++i)
S.erase(a[i]);
for(int i=l[num[Num[V]]];i<=Num[V];++i)
S.erase(a[i]);
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
makeblock();
for(int i=1;i<=n;++i)
scanf("%d",&w[i]);
for(int i=1;i<n;++i)
{
scanf("%d%d",&x,&y);
AddEdge(x,y);
AddEdge(y,x);
}
top[1]=1;
Num[1]=++tot;
dfs(1,0,1);
dfs2(1);
for(int i=1;i<=n;++i)
{
t[Num[i]].v=w[i];
t[Num[i]].p=Num[i];
}
en2=n;
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&Ks[i],&xs[i],&ys[i]);
if(!Ks[i])
{
t[++en2].v=ys[i];
t[en2].p=en2;
}
}
sort(t+1,t+en2+1);
ma[a[t[1].p]=++en3]=t[1].v;
for(int i=2;i<=en2;++i)
{
if(t[i].v!=t[i-1].v) ++en3;
ma[a[t[i].p]=en3]=t[i].v;
}
val_mb();
Init_Ts();
en2=n;
for(int i=1;i<=m;++i)
{
if(Ks[i])
{
int ans=Query(xs[i],ys[i],Ks[i]);
if(ans==INF) puts("invalid request!");
else printf("%d\n",ma[ans]);
}
else
{
++en2;
for(int j=num[Num[xs[i]]];j<=sum;++j)
{
T[j].erase(a[Num[xs[i]]]);
T[j].insert(a[en2]);
}
a[Num[xs[i]]]=a[en2];
}
}
return 0;
}

【树链剖分】【函数式权值分块】bzoj1146 [CTSC2008]网络管理Network的更多相关文章

  1. 刷题总结——骑士的旅行(bzoj4336 树链剖分套权值线段树)

    题目: Description 在一片古老的土地上,有一个繁荣的文明. 这片大地几乎被森林覆盖,有N座城坐落其中.巧合的是,这N座城由恰好N-1条双 向道路连接起来,使得任意两座城都是连通的.也就是说 ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分 - 点权剖分 - 单点权修改)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 树链剖分模版题,打的时候注意点就行.做这题的时候,真的傻了,单词拼错检查了一个多小时 ...

  4. 【函数式权值分块】【分块】bzoj3196 Tyvj 1730 二逼平衡树

    #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define ...

  5. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  6. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  7. HDU3669 Aragorn's Story 树链剖分 点权

    HDU3669 Aragorn's Story 树链剖分 点权 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: n个点的,m条边,每个点都 ...

  8. [BZOJ1146][CTSC2008]网络管理Network

    [BZOJ1146][CTSC2008]网络管理Network 试题描述 M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个 部门之间协同工作,公司搭建 ...

  9. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

随机推荐

  1. recycleview的基础Adapter

    .封装了一个基础的adapter.,用于recycleview的快捷使用有BaseAdapter,BaseViewHolder,PAdapter,MainActivity public abstrac ...

  2. 怎么让Intellj Idea 把数据库的表映射成hibernate的domain对象

    步骤如下: 第一步:连接数据源: 点击:idea右边的database.如下图所示: 或者你依次点击:view-->Tool windows--->database 然后你将看在如下点击下 ...

  3. hdu 6223 Infinite Fraction Path

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6223 题意:给定长度为n的一串数字S,现在要按照一种规则寻找长度为n的数字串,使得该数字串的字典序最大 ...

  4. 【poj3734】矩阵乘法

    题解: 若当前有i个格子.2个是偶数的方案数为a[i]1个是偶数的方案数为b[i]0个是偶数的方案数为c[i] a[i+1]=2*a[i](i+1染成黄或蓝)+b[i](把奇数变为偶数)b[i+1]= ...

  5. [转载]超赞!32款扁平化Photoshop PSD UI工具包(下)

    32款扁平化风格的UI工具包第二弹!上篇为大家分享了16款风格各异的UI Kits,下篇继续为大家呈上16款精美的UI工具包,全部都有Photoshop PSD文件可以下载哦,喜欢就赶紧收藏吧! 17 ...

  6. mongoDB的简单使用

    1.客户端连接: ./mongo 2.数据库 一个mongodb中可以建立多个数据库. MongoDB的默认数据库为"db",该数据库存储在data目录中. MongoDB的单个实 ...

  7. MySQL 进阶(待发布)

    视图 存储过程 触发器 基本函数

  8. [Leetcode Week8]Triangle

    Triangle 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/triangle/description/ Description Given a t ...

  9. C#中文乱码转换

    string text="中文";string keyword;byte[] buffer= Encoding.UTF8.GetBytes(text);keyword=Encodi ...

  10. phpstorm+xdebug详解

    1.run->edit configurations StartUrl最好是网址,不然容易出错,Server选择的是配置时添加的Servers,详可参考:http://www.cnblogs.c ...