Discipntion

Let's call an array a of size n coprime iff gcd(a1, a2, ..., an) = 1, where gcd is the greatest common divisor of the arguments.

You are given two numbers n and k. For each i (1 ≤ i ≤ k) you have to determine the number of coprime arrays a of size n such that for every j (1 ≤ j ≤ n) 1 ≤ aj ≤ i. Since the answers can be very large, you have to calculate them modulo 109 + 7.

Input

The first line contains two integers n and k (1 ≤ n, k ≤ 2·106) — the size of the desired arrays and the maximum upper bound on elements, respectively.

Output

Since printing 2·106 numbers may take a lot of time, you have to output the answer in such a way:

Let bi be the number of coprime arrays with elements in range [1, i], taken modulo 109 + 7. You have to print , taken modulo 109 + 7. Here  denotes bitwise xor operation (^ in C++ or Java, xor in Pascal).

Example

Input
3 4
Output
82
Input
2000000 8
Output
339310063

Note

Explanation of the example:

Since the number of coprime arrays is large, we will list the arrays that are non-coprime, but contain only elements in range [1, i]:

For i = 1, the only array is coprime. b1 = 1.

For i = 2, array [2, 2, 2] is not coprime. b2 = 7.

For i = 3, arrays [2, 2, 2] and [3, 3, 3] are not coprime. b3 = 25.

For i = 4, arrays [2, 2, 2], [3, 3, 3], [2, 2, 4], [2, 4, 2], [2, 4, 4], [4, 2, 2], [4, 2, 4], [4, 4, 2] and [4, 4, 4] are not coprime. b4 = 55.

一开始没有想到题目求b的整体性,,,直接用了一个简单的容斥,,,然后就T了。。

如下

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define ll long long
#define ha 1000000007
#define maxn 2000005
using namespace std;
int ans[maxn],n,k,tot; inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} inline void get(int x){
ans[x]=-ksm(x,n);
for(int i=2,j,now;i<=x;i=j+1){
now=x/i,j=x/now;
ans[x]=((ll)ans[x]+(ll)(j-i+1)*(ll)ans[now])%ha;
} ans[x]=-ans[x];
if(ans[x]<0) ans[x]+=ha;
} int main(){
scanf("%d%d",&n,&k);
ans[1]=1;
for(int i=2;i<=k;i++) get(i); tot=0;
for(int i=1;i<=k;i++){
tot+=ans[i]^i;
while(tot>=ha) tot-=ha;
} printf("%d\n",tot);
return 0;
}

  

后来发现还是要上反演才能过啊hhhh。

当我们求b[t]的时候:

设g(x)为gcd是x的倍数的数组个数,
显然g(x)=(t/x)^n;
设f(x)为gcd==x的数组个数,
显然g(x)=Σf(x*i)
所以=> f(x)=Σg(x*i)*μ(i)

我们求的显然是f(1),
所以b[t]=Σg(i)*μ(i)=Σ μ(i) * (t/i)^n

我们考虑通过b[t-1]推b[t],发现只有i是t的约数时(t/i)变化了,且都是+1;而对于其他的i,(t/i)不变。

所以我们可以先预处理出b[]的差分(可以做到调和级数的N ln N,通过枚举i,但前提是你得先预处理出(1-k)的n次方最好再把次方的差分也一起算出来)。

最后求差分的前缀和就是b[]了。

正解如下

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define ll long long
#define ha 1000000007
#define maxn 2000005
using namespace std;
int ans[maxn],n,k,tot;
int ci[maxn],u[maxn];
int zs[1000000],t=0;
bool v[maxn]; inline void init(){
u[1]=1;
for(int i=2;i<=2000000;i++){
if(!v[i]) zs[++t]=i,u[i]=-1;
for(int j=1,w;j<=t&&(w=zs[j]*i)<=2000000;j++){
v[w]=1;
if(!(i%zs[j])) break;
u[w]=-u[i];
}
}
} inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} int main(){
init(); scanf("%d%d",&n,&k);
for(int i=1;i<=k;i++) ci[i]=ksm(i,n);
for(int i=k;i;i--){
ci[i]-=ci[i-1];
if(ci[i]<0) ci[i]+=ha;
} for(int i=1;i<=k;i++)
for(int j=i;j<=k;j+=i){
ans[j]+=u[i]*ci[j/i];
if(ans[j]<0) ans[j]+=ha;
else if(ans[j]>=ha) ans[j]-=ha;
} for(int i=1;i<=k;i++){
ans[i]+=ans[i-1];
if(ans[i]>=ha) ans[i]-=ha; tot+=ans[i]^i;
while(tot>=ha) tot-=ha;
} printf("%d\n",tot);
return 0;
}

  

Codeforces 915 G Coprime Arrays的更多相关文章

  1. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演

    [题目]G. Coprime Arrays [题意]当含n个数字的数组的总gcd=1时认为这个数组互质.给定n和k,求所有sum(i),i=1~k,其中sum(i)为n个数字的数组,每个数字均< ...

  2. 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分

    Coprime Arrays CodeForces - 915G Let's call an array a of size n coprime iff gcd(a1, a2, ..., *a**n) ...

  3. Educational Codeforces Round 36 (Rated for Div. 2) G. Coprime Arrays

    求a_i 在 [1,k]范围内,gcd(a_1,a_2...,a_n) = 1的a的数组个数. F(x)表示gcd(a_1,a_2,...,a_n) = i的a的个数 f(x)表示gcd(a_1,a_ ...

  4. Codeforces 915G Coprime Arrays 莫比乌斯反演 (看题解)

    Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long ...

  5. CF915G Coprime Arrays (莫比乌斯反演)

    CF915G Coprime Arrays 题解 (看了好半天终于看懂了) 我们先对于每一个i想,那么 我们设 我们用莫比乌斯反演 有了这个式子,可比可以求出△ans呢?我们注意到,由于那个(i/d) ...

  6. [codeforces 549]G. Happy Line

    [codeforces 549]G. Happy Line 试题描述 Do you like summer? Residents of Berland do. They especially love ...

  7. CodeForces 794 G.Replace All

    CodeForces 794 G.Replace All 解题思路 首先如果字符串 \(A, B\) 没有匹配,那么二元组 \((S, T)\) 合法的一个必要条件是存在正整数对 \((x,y)\), ...

  8. Codeforces 1207 G. Indie Album

    Codeforces 1207 G. Indie Album 解题思路 离线下来用SAM或者AC自动机就是一个单点加子树求和,套个树状数组就好了,因为这个题广义SAM不能存在 \(len[u] = l ...

  9. Coprime Arrays CodeForces - 915G (数论水题)

    反演一下可以得到$b_i=\sum\limits_{d=1}^i{\mu(i)(\lfloor \frac{i}{d} \rfloor})^n$ 整除分块的话会T, 可以维护一个差分, 优化到$O(n ...

随机推荐

  1. JavaScript词法作用域与调用对象

    关于 Javascript 的函数作用域.调用对象和闭包之间的关系很微妙,关于它们的文章已经有很多,但不知道为什么很多新手都难以理解.我就尝试用比较通俗的语言来表达我自己的理解吧. 作用域 Scope ...

  2. 杭电hdu 2089 数位dp

    杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍 ...

  3. oracle的sql语句训练

    --查询工资最高的人的名字select ename ,sal from emp where sal=(select max(sal) from emp );--求出员工的工资在所有人的平均工资之上的人 ...

  4. javascript中top、clientTop、scrollTop、offsetTop的讲解

    下面结合各上图介绍一下各个属性的作用: 一.offsetTop属性: 此属性可以获取元素的上外缘距离最近采用定位父元素内壁的距离,如果父元素中没有采用定位的,则是获取上外边缘距离文档内壁的距离.所谓的 ...

  5. 带依赖包的maven打包配置

    转载自:http://outofmemory.cn/code-snippet/2594/carry-yilai-bao-maven-dabao-configuration 可以在maven的packa ...

  6. 在Ubuntu下安装IntelliJ IDEA

    1)在IDEA官网下载Linux版本安装包 2)将安装包shell到/usr/local目录下 3)切到安装目录下,验证文件校验和,官网上显示的校验和: 3d77ee82094dab51e345f16 ...

  7. 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会

    [算法]树型DP||树的重心(贪心) [题解] 两遍DFS,第一次得到所有节点子树的路径和,第二次给出除了该子树外其它部分的路径和,时时计算答案. long long!!! #include<c ...

  8. Django-内置Admin

    Django内置的Admin是对于model中对应的数据表进行增删改查提供的组件,使用方式有: 依赖APP: django.contrib.auth django.contrib.contenttyp ...

  9. 哪些情况会导致OOM

    1. 堆溢出 java堆用于存储对象实例,只要不断地创建对象,并且这些对象不会被回收(什么情况对象不会被回收呢?如:由于GC Root到对象之间有可达路径,所以垃圾回收机制不会清除这些对象),那么,当 ...

  10. IPython Notebook error: Error loading notebook

    打开jupyter突然报错: An unknown error occurred while loading this notebook. This version can load notebook ...