Super Moban
HAO BAN ZI 包括求解,判断无解,求自由变元个数以及标记不确定的变元。来源:http://blog.csdn.net/keshuqi/article/details/51921615
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std; const int MAXN=; int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元,即自由元; /*
void Debug(void)
{
int i, j;
for (i = 0; i < equ; i++)
{
for (j = 0; j < var + 1; j++)
{
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
*/ inline int gcd(int a,int b)//非递归求最大公因数;
{
int t;
while(b!=)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;//先除后乘防溢出,求最小公倍数;
} // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var,最后一列为等式右边数.
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列collum;
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index; for(int i=;i<=var;i++)
{
x[i]=;
free_x[i]=true;
} //转换为阶梯阵.
col=; // 当前处理的列
for(k = ;k < equ && col < var;k++,col++)
{// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k)
{// 与第k行交换.
for(j=k;j<var+;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==)
{// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+;i<equ;i++)
{// 枚举要删去的行.
if(a[i][col]!=)
{
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<)tb=-tb;//异号的情况是相加
for(j=col;j<var+;j++)
{
a[i][j] = a[i][j]*ta-a[k][j]*tb;
}
}
}
} // Debug(); // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++)
{ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col] != ) return -;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if (k < var)
{
// 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
for (i = k - ; i >= ; i--)
{
// 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
// 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
free_x_num = ; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
for (j = ; j < var; j++)
{
if (a[i][j] != && free_x[j]) free_x_num++, free_index = j;
}
if (free_x_num > ) continue; // 无法求解出确定的变元.
// 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
temp = a[i][var];
for (j = ; j < var; j++)
{
if (a[i][j] != && j != free_index) temp -= a[i][j] * x[j];
}
x[free_index] = temp / a[i][free_index]; // 求出该变元.
free_x[free_index] = ; // 该变元是确定的.
}
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - ; i >= ; i--)
{
temp = a[i][var];
for (j = i + ; j < var; j++)
{
if (a[i][j] != ) temp -= a[i][j] * x[j];
}
if (temp % a[i][i] != ) return -; // 说明有浮点数解,但无整数解.
x[i] = temp / a[i][i];
}
return ;
}
int main(void)
{
freopen("in.txt", "r", stdin);
freopen("out.txt","w",stdout);
int i, j;
int equ,var;
while (scanf("%d %d", &equ, &var) != EOF)
{
memset(a, , sizeof(a));
for (i = ; i < equ; i++)
{
for (j = ; j < var + ; j++)
{
scanf("%d", &a[i][j]);
}
}
// Debug();
int free_num = Gauss(equ,var);
if (free_num == -) printf("无解!\n");
else if (free_num == -) printf("有浮点数解,无整数解!\n");
else if (free_num > )
{
printf("无穷多解! 自由变元个数为%d\n", free_num);
for (i = ; i < var; i++)
{
if (free_x[i]) printf("x%d 是不确定的\n", i + );
else printf("x%d: %d\n", i + , x[i]);
}
}
else
{
for (i = ; i < var; i++)
{
printf("x%d: %d\n", i + , x[i]);
}
}
printf("\n");
}
return ;
}
Super Moban的更多相关文章
- 子类继承父类时JVM报出Error:Implicit super constructor People() is undefined for default constructor. Must define an explicit constructor
当子类继承父类的时候,若父类没有定义带参的构造方法,则子类可以继承父类的默认构造方法 当父类中定义了带参的构造方法,子类必须显式的调用父类的构造方法 若此时,子类还想调用父类的默认构造方法,必须在父类 ...
- [LeetCode] Super Ugly Number 超级丑陋数
Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...
- Maven Super POM
Maven super POM defines some properties. Three ways to find it ${M2_HOME}/lib/maven-model-builder-3. ...
- java基础 super 子类调用父类
如果希望在子类中,去调用父类的构造方法,要求在子类的构造函数调用 example如下: package test; /* * 如果希望在子类中,去调用父类的构造方法,要求在子类的构造函数调用 * */ ...
- Python类中super()和__init__()的关系
Python类中super()和__init__()的关系 1.单继承时super()和__init__()实现的功能是类似的 class Base(object): def __init__(sel ...
- java方法重载(overload)、重写(override);this、super关键简介
一.方法重载: 条件:必须在一个类中,方法名称相同,参数列表不同(包括:数据类型.顺序.个数),典型案例构 造方重载. 注意:与返回值无关 二.方法重写: 条件: (1)继承某个类或实现某接口 (2 ...
- Java super关键字活用
在实际开发中我们要自定义组件,就需要继承自某个组件类,如果我们自定义的这个组件类也需要像被继承的这个组件类一样,拥有丰富的构造方法. 关键字super的作用就更加显得尤为重要了,你可以在堆砌自己自定义 ...
- 深入super,看Python如何解决钻石继承难题 【转】
原文地址 http://www.cnblogs.com/testview/p/4651198.html 1. Python的继承以及调用父类成员 python子类调用父类成员有2种方法,分别是普通 ...
- 关于[super dealloc]
销毁一个对象时,需要重写系统的dealloc方法来释放当前类所拥有的对象,在dealloc方法中需要先释放当前类中所有的对象,然后再调用[super dealloc]释放父类中所拥有的对象.如先调用[ ...
随机推荐
- 双击 ajax修改单元格里的值
最终效果 列表页面表格里双击排序修改其值 按钮样式要引入bootstrap才可以用 本文件用的是laravel框架环境 larave路由里 Route::get('category/changesta ...
- Could not obtain transaction-synchronized Session for current thread 错误的解决方法!
BsTable bsTable = new BsTable(); // String time = request.getParameter("date"); String tim ...
- Redis缓存数据库的安装与配置(1)
1.安装 tarxf redis-3.2.5.tar.gz cd redis-3.2.5 make mkdir -p /usr/local/redis/bin src目录下这些文件作用如下 redis ...
- Spring BindingResult验证框架Validation特殊用法
使用注解@Valid(实体属性校验) Springboot实现 Spring实现 一.准备校验时使用的JAR validation-api-1.0.0.GA.jar:JDK的接口: hibernate ...
- ChemDraw Std 14性价比最高版本,即将下架
虽然ChemDraw Std 14是ChemOffice®14的基础组件,但是基础功能涵盖全面,是教育专供产品.根据官方最新消息ChemDraw系列软件产品线将进行全面的升级,ChemOffice®1 ...
- vue2018年5月报错No parser and no file path given
mac电脑直接: rm -rf node_modules rm package-lock.json npm install npm install prettier@~1.12.1 执行完这四个命令, ...
- Python字符串处理:过滤字符串中的英文与符号,保留汉字
使用Python 的re模块,re模块提供了re.sub用于替换字符串中的匹配项. re.sub(pattern, repl, string, count=0) 参数说明: pattern:正则重的模 ...
- 高德API+.NET解决租房问题(新增诚信房源)
作者:李国宝链接:https://zhuanlan.zhihu.com/p/22105008(欢迎点赞)来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 之前有小伙伴反应 ...
- Unity3d工具方法小集
1.获取垂直水平方向上的输入: float moveHorizontal = Input.GetAxis("Horizontal"); float moveVertical = I ...
- 成为IT精英,我奋斗7年【转】
这些日子 我一直在写一个实时操作系统内核,已有小成了,等写完我会全部公开,希望能够为国内IT的发展尽自己一份微薄的力量.最近看到很多学生朋友和我当年一样没 有方向 ,所以把我的经历写出来与大家共勉,希 ...